Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-fm8r5 Total loading time: 0.64 Render date: 2021-06-24T13:35:57.757Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Neural basis of the Stroop interference task: Response competition or selective attention?

Published online by Cambridge University Press:  12 November 2002

LARISSA A. MEAD
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
ANDREW R. MAYER
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
JULIE A. BOBHOLZ
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
SCOTT J. WOODLEY
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
JOSEPH M. CUNNINGHAM
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
THOMAS A. HAMMEKE
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin
STEPHEN M. RAO
Affiliation:
Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

Previous neuroimaging studies of the Stroop task have postulated that the anterior cingulate cortex (ACC) plays a critical role in resolution of the Stroop interference condition. However, activation of the ACC is not invariably seen and appears to depend on a variety of methodological factors, including the degree of response conflict and response expectancies. The present functional MRI study was designed to identify those brain areas critically involved in the interference condition. Healthy subjects underwent a blocked-trial design fMRI experiment while responding to 1 of 3 stimulus conditions: (1) incongruent color words, (2) congruent color words, and (3) color-neutral words. Subjects responded to the printed color of the word via a manual response. Compared to the congruent and neutral conditions, the incongruent condition produced significant activation within the left inferior precentral sulcus (IpreCS) located on the border between the inferior frontal gyrus, pars opercularis (BA 44) and the ventral premotor region (BA 6). Significant deactivations in the rostral component of the ACC and the posterior cingulate gyrus were also observed. Selective activation of the left IpreCS is compatible with findings from previous neuroimaging, lesion, electrophysiological, and behavioral studies and is presumably related to the mediation of competing articulatory demands during the interference condition. (JINS, 2002, 8, 735–742.)

Type
Research Article
Copyright
© 2002 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below.
90
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neural basis of the Stroop interference task: Response competition or selective attention?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Neural basis of the Stroop interference task: Response competition or selective attention?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Neural basis of the Stroop interference task: Response competition or selective attention?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *