Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-hfbn9 Total loading time: 0.373 Render date: 2021-06-15T14:27:21.599Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Modern Methods for Interrogating the Human Connectome

Published online by Cambridge University Press:  18 February 2016

Mark J. Lowe
Imaging Institute, Cleveland Clinic, Cleveland, Ohio
Ken E. Sakaie
Imaging Institute, Cleveland Clinic, Cleveland, Ohio
Erik B. Beall
Imaging Institute, Cleveland Clinic, Cleveland, Ohio
Vince D. Calhoun
The Mind Research Network, Albuquerque, New Mexico Department of ECE, University of New Mexico, Albuquerque, New Mexico
David A. Bridwell
The Mind Research Network, Albuquerque, New Mexico Department of ECE, University of New Mexico, Albuquerque, New Mexico
Mikail Rubinov
Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
Stephen M. Rao
Neurological Institute, Cleveland Clinic, Cleveland, Ohio
E-mail address:


Objectives: Connectionist theories of brain function took hold with the seminal contributions of Norman Geschwind a half century ago. Modern neuroimaging techniques have expanded the scientific interest in the study of brain connectivity to include the intact as well as disordered brain. Methods: In this review, we describe the most common techniques used to measure functional and structural connectivity, including resting state functional MRI, diffusion MRI, and electroencephalography and magnetoencephalography coherence. We also review the most common analytical approaches used for examining brain interconnectivity associated with these various imaging methods. Results: This review presents a critical analysis of the assumptions, as well as methodological limitations, of each imaging and analysis approach. Conclusions: The overall goal of this review is to provide the reader with an introduction to evaluating the scientific methods underlying investigations that probe the human connectome. (JINS, 2016, 22, 105–119)

Critical Reviews
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.


Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31, 12071216.Google ScholarPubMed
Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 6372.CrossRefGoogle Scholar
Alexander-Bloch, A., Giedd, J.N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. [Review]. Nature Reviews Neuroscience, 14(5), 322336.CrossRefGoogle Scholar
Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., & Calhoun, V.D. (2014). Tracking Whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663676.CrossRefGoogle ScholarPubMed
Allen, E.A., Erhardt, E.B., Damaraju, E., Gruner, W., Segall, J.M., Silva, R.F., & Calhoun, V.D. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2.CrossRefGoogle ScholarPubMed
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., & Evans, A.C. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340(6139), 14721475.CrossRefGoogle ScholarPubMed
Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P.J. (2008). AxCaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 13471354.CrossRefGoogle ScholarPubMed
Assemlal, H.E., Tschumperle, D., Brun, L., & Siddiqi, K. (2011). Recent advances in diffusion MRI modeling: Angular and radial reconstruction. Medical Image Analysis, 15(4), 369396.CrossRefGoogle ScholarPubMed
Barazany, D., Basser, P.J., & Assaf, Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(Pt 5), 12101220.CrossRefGoogle Scholar
Basser, P.J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259267.CrossRefGoogle Scholar
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625632.3.0.CO;2-O>CrossRefGoogle Scholar
Bassett, D.S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512523.CrossRefGoogle ScholarPubMed
Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 1951819523.CrossRefGoogle Scholar
Beall, E.B., & Lowe, M.J. (2007). Isolating physiologic noise sources with independently determined spatial measures. Neuroimage, 37(4), 12861300.CrossRefGoogle Scholar
Beall, E.B., & Lowe, M.J. (2010). The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. Journal of Neuroscience Methods, 191(2), 263276.CrossRefGoogle ScholarPubMed
Beall, E.B., & Lowe, M.J. (2014). SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction. Neuroimage, 101, 2134.CrossRefGoogle ScholarPubMed
Beckmann, C.F., & Smith, S.M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage, 25(1), 294311.CrossRefGoogle ScholarPubMed
Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., & Woolrich, M.W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144155.CrossRefGoogle ScholarPubMed
Behrens, T.E., & Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22(1), 144153.CrossRefGoogle ScholarPubMed
Bendat, J.S., & Piersol, A.G. (2000). Random data. Analysis and measurement procedures (3rd ed.). New York: John Wiley & Sons.Google Scholar
Biswal, B.B., & Hudetz, A.G. (1996). Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvascular Research, 52(1), 112.CrossRefGoogle ScholarPubMed
Biswal, B.B., Hudetz, A.G., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1997). Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. Journal of Cerebral Blood Flow & Metabolism, 17(3), 301308.CrossRefGoogle ScholarPubMed
Biswal, B.B., Van Kylen, J., & Hyde, J.S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state. NMR in Biomedicine, 10(4-5), 165170.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Biswal, B.B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain. Magnetic Resonance in Medicine, 34(4), 537541.CrossRefGoogle ScholarPubMed
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175308.CrossRefGoogle Scholar
Boubela, R.N., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., & Moser, E. (2013). Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Frontiers in Human Neuroscience, 7, 168.CrossRefGoogle Scholar
Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R., & Nagarajan, S.S. (2011). Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. Neuroimage, 56(3), 10821104.CrossRefGoogle ScholarPubMed
Budde, M.D., Kim, J.H., Liang, H.F., Schmidt, R.E., Russell, J.H., Cross, A.H., && Song, S.K. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magnetic Resonance in Medicine, 57(4), 688695.CrossRefGoogle ScholarPubMed
Bullmore, E.T., Brammer, M.J., Rabe-Hesketh, S., Curtis, V.A., Morris, R.G., Williams, S.C., & McGuire, P.K. (1999). Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Human Brain Mapping, 7(1), 3848.3.0.CO;2-Q>CrossRefGoogle Scholar
Bullmore, E.T., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198.CrossRefGoogle ScholarPubMed
Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
Calhoun, V.D., & Adali, T. (2012). Multi-subject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Reviews in Biomedical Engineering, 5, 6072.CrossRefGoogle Scholar
Calhoun, V.D., Adali, T., Pearlson, G.D., & Pekar, J.J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140151.CrossRefGoogle ScholarPubMed
Calhoun, V.D., & Allen, E. (2013). Extracting intrinsic functional networks with feature-based group independent component analysis. Psychometrika, 78(2), 243259.CrossRefGoogle ScholarPubMed
Calhoun, V.D., Kiehl, K.A., & Pearlson, G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828838.CrossRefGoogle Scholar
Calhoun, V.D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262274.CrossRefGoogle ScholarPubMed
Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 7794.CrossRefGoogle Scholar
Chang, C., & Glover, G.H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 8198.CrossRefGoogle ScholarPubMed
Cohen, D., & Cuffin, B.N. (1983). Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 56(1), 3851.CrossRefGoogle ScholarPubMed
Cole, D.M., Smith, S.M., & Beckmann, C.F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8.Google ScholarPubMed
Colizza, V., Flammini, A., Serrano, M.A., & Vespignani, A. (2006). Detecting rich-club ordering in complex networks. [10.1038/nphys209]. Nature Physics, 2(2), 110115.CrossRefGoogle Scholar
Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., & Raichle, M.E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 1042210427.CrossRefGoogle Scholar
Cooper, R., Crow, H.J., Walter, W.G., & Winter, A.L. (1966). Regional control of cerebral vascular reactivity and oxygen supply in man. Brain Research, 3(2), 174191.CrossRefGoogle ScholarPubMed
Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR American Journal of Neuroradiology, 22(7), 13261333.Google Scholar
Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 16361644.Google Scholar
Cordes, D., Nandy, R.R., Schafer, S., & Wager, T.D. (2014). Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. Neuroimage, 89, 314330.CrossRefGoogle Scholar
Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162173.CrossRefGoogle ScholarPubMed
Craddock, R.C., Jbabdi, S., Yan, C.-G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., & Milham, M.P. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524539.CrossRefGoogle Scholar
Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., && Bullmore, E.T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 23822395.CrossRefGoogle ScholarPubMed
Csermely, P., London, A., Wu, L.-Y., & Uzzi, B. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1(2), 93123.CrossRefGoogle Scholar
Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., & Calhoun, V.D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage. Clinical, 5, 298308.CrossRefGoogle Scholar
Dora, E., & Kovach, A.G. (1981). Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiology of the Academy of Science of Hungary, 57(3), 261275.Google ScholarPubMed
Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., & Smith, S. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55(3), 880890.CrossRefGoogle ScholarPubMed
Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., & Apkarian, A.V. (2005). Scale-free brain functional networks. Physical Review Letters, 94(1), 018102.CrossRefGoogle ScholarPubMed
Eichele, T., Calhoun, V.D., & Debener, S. (2009). Mining EEG–fMRI using independent component analysis. International Journal of Psychophysiology, 73(1), 5361.CrossRefGoogle ScholarPubMed
Engel, A.K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704716.CrossRefGoogle ScholarPubMed
Erhardt, E.B., Rachakonda, S., Bedrick, E.J., Allen, E.A., Adali, T., & Calhoun, V.D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32(12), 20752095.CrossRefGoogle ScholarPubMed
Esposito, F., Scarabino, T., Hyvarinen, A., Himberg, J., Formisano, E., Comani, S., & Salle, F. (2005). Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage, 25(1), 193205.CrossRefGoogle ScholarPubMed
Evans, A.C. (2013). Networks of anatomical covariance. Neuroimage, 80, 489504.CrossRefGoogle Scholar
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75174.CrossRefGoogle Scholar
Fox, M.D., & Raichle, M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711.CrossRefGoogle ScholarPubMed
Friston, K.J., Frith, C.D., Liddle, P.F., & Frackowiak, R.S. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 514.CrossRefGoogle Scholar
Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237294.CrossRefGoogle Scholar
Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585644.CrossRefGoogle ScholarPubMed
Girvan, M., & Newman, M.E.J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 78217826.CrossRefGoogle ScholarPubMed
Glover, G.H., Li, T.Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162167.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Golanov, E.V., Yamamoto, S., & Resi, D.J. (1994). Spontaneous waves of cerebral blood flow associated with patterns of electrocortical activity. American Journal of Physiology, 266, R204R214.Google ScholarPubMed
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., &&Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524536.CrossRefGoogle Scholar
Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253258.CrossRefGoogle ScholarPubMed
Guo, Y., & Pagnoni, G. (2008). A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage, 42(3), 10781093.CrossRefGoogle Scholar
Gusnard, D.A., Akbudak, E., Shulman, G.L., & Raichle, M.E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 42594264.CrossRefGoogle Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Grant, P.E., Wedeen, V.J., & Sporns, O. (2010). MR connectomics: Principles and challenges. Journal of Neuroscience Methods, 194(1), 3445.CrossRefGoogle Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., && Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.CrossRefGoogle Scholar
Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., && Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2(7), e597.CrossRefGoogle ScholarPubMed
Halsey, J.H. Jr., & McFarland, S. (1974). Oxygen cycles and metabolic autoregulation. Stroke, 5(2), 219225.CrossRefGoogle ScholarPubMed
Harrington, D.L., Rubinov, M., Durgerian, S., Mourany, L., Reece, C., Koenig, K., & Rao, S.M. (2015). Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain, 138(Pt 8), 23322346.CrossRefGoogle ScholarPubMed
He, Y., Chen, Z.J., & Evans, A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 24072419.CrossRefGoogle ScholarPubMed
Heinrichs, H.R., & Zakzanis, K.K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12(3), 426445.CrossRefGoogle Scholar
Hudetz, A.G., Smith, J.J., Lee, J.G., Bosnjak, Z.J., & Kampine, J.P. (1995). Modification of cerebral laser-Doppler flow oscillations by halothane, PCO2, and nitric oxide synthase blockade. American Journal of Physiology, 269(1 Pt 2), H114H120.Google ScholarPubMed
Humphries, M.D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051.CrossRefGoogle ScholarPubMed
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360378.CrossRefGoogle ScholarPubMed
Hyvarinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: John Wiley & Sons.CrossRefGoogle ScholarPubMed
Insel, T.R., Landis, S.C., & Collins, F.S. (2013). Research priorities. The NIH BRAIN Initiative. Science, 340(6133), 687688.CrossRefGoogle ScholarPubMed
Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage, 40(3), 10641076.CrossRefGoogle ScholarPubMed
Jafri, M.J., Pearlson, G.D., Stevens, M., & Calhoun, V.D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 39(4), 16661681.CrossRefGoogle Scholar
Johansen-Berg, H., & Behrens, T.E.J. (2009). Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy (1st ed.). Boston: Elsevier/Academic Press.Google Scholar
Jones, D.K. (2004). The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magnetic Resonance in Medicine, 51(4), 807815.CrossRefGoogle ScholarPubMed
Jones, D.K. (2010). Diffusion MRI: Theory, methods, and applications. New York: Oxford University Press.Google Scholar
Kalcher, K., Boubela, R.N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., & Moser, E. (2014). The spectral diversity of resting-state fluctuations in the human brain. PLoS One, 9(4), e93375.CrossRefGoogle ScholarPubMed
Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425(6961), 954956.CrossRefGoogle ScholarPubMed
Kopell, N.J., Gritton, H.J., Whittington, M.A., & Kramer, M.A. (2014). Beyond the connectome: The dynome. Neuron, 83(6), 13191328.CrossRefGoogle ScholarPubMed
Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., && Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 1105311058.CrossRefGoogle ScholarPubMed
Leonardi, N., Shirer, W.R., Greicius, l.D., & Van De Ville, D. (2014). Disentangling dynamic networks: Separated and joint expressions of functional connectivity patterns in time: Disentangling dynamic networks. Human Brain Mapping, 35(12), 59845995.CrossRefGoogle ScholarPubMed
Leopold, D.A., Murayama, Y., & Logothetis, N.K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13(4), 422433.CrossRefGoogle Scholar
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., & Jiang, T. (2008). Disrupted small-world networks in schiz+ophrenia. Brain, 131(Pt 4), 945961.CrossRefGoogle Scholar
Logothetis, N.K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 10031037.CrossRefGoogle ScholarPubMed
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150157.CrossRefGoogle ScholarPubMed
Lowe, M.J., Beall, E.B., Sakaie, K.E., Koenig, K.A., Stone, L., Marrie, R.A., && Phillips, M.D. (2008). Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Human Brain Mapping, 29(7), 818827.CrossRefGoogle ScholarPubMed
Lowe, M.J., Dzemidzic, M., Lurito, J.T., Mathews, V.P., & Phillips, M.D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12(5), 582587.CrossRefGoogle ScholarPubMed
Lowe, M.J., Horenstein, C., Hirsch, J.G., Marrie, R.A., Stone, L., Bhattacharyya, P.K., et al. (2006). Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. Neuroimage, 32(3), 11271133.CrossRefGoogle ScholarPubMed
Lowe, M.J., Koenig, K.A., Beall, E.B., Sakaie, K., Stone, L., Bermel, R., && Phillips, M.D. (2014). Anatomic connectivity assessed using pathway radial diffusivity is related to functional connectivity in monosynaptic pathways. Brain Connectivity, 4(7), 558565.CrossRefGoogle ScholarPubMed
Lowe, M.J., Mock, B.J., & Sorenson, J.A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119132.CrossRefGoogle ScholarPubMed
Lowe, M.J., & & Russell, D.P. (1999). Treatment of baseline drifts in fMRI time series analysis. Journal of Computer Assisted Tomography, 23(3), 463473.CrossRefGoogle ScholarPubMed
Lowe, M.J., Rutecki, P., Woodard, A., Turski, P., & Sorenson, J.A. (1997). Auditory cortex fMRI noise correlations in callosal agenesis. Human Brain Mapping, 5(4), S194.Google Scholar
Lowe, M.J., & Sorenson, J.A. (1997). Spatially filtering functional magnetic resonance imaging data. Magnetic Resonance in Medicine, 37(5), 723729.CrossRefGoogle Scholar
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204210.CrossRefGoogle Scholar
McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., && Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160629.3.0.CO;2-1>CrossRefGoogle Scholar
Mesholam-Gately, R.I., Giuliano, A.J., Goff, K.P., Faraone, S.V., & Seidman, L.J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neurophysiology, 23(3), 315336.Google Scholar
Meunier, D., Lambiotte, R., & Bullmore, E.T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200.CrossRefGoogle ScholarPubMed
Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 21952222.CrossRefGoogle ScholarPubMed
Mori, S., Crain, B.J., Chacko, V.P., & van Zijl, P.C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265269.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Moskalenko, Y.E. (1980). Biophysical aspects of cerebral circulation. Oxford: Pergamon Press.Google Scholar
Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167256.CrossRefGoogle Scholar
Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nunez, P.L., Silberstein, R.B., Shi, Z., Carpenter, M.R., Srinivasan, R., Tucker, D.M., & Wijesinghe, R.S. (1999). EEG coherency II: Experimental comparisons of multiple measures. Clinical Neurophysiology, 110(3), 469486.CrossRefGoogle Scholar
Nunez, P.L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York: Oxford University Press.CrossRefGoogle Scholar
Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R. B., && Cadusch, P. J. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499515.CrossRefGoogle Scholar
Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhaupl, K., et al. (2000). Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage, 12(6), 623639.CrossRefGoogle Scholar
Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., & Styner, M. (2014). DTIPrep: Quality control of diffusion-weighted images. Frontiers in Neuroinformatics, 8, 4.CrossRefGoogle ScholarPubMed
Peltier, S.J., & Noll, D.C. (2002). T(2)(*) dependence of low frequency functional connectivity. Neuroimage, 16(4), 985992.CrossRefGoogle Scholar
Perlbarg, V., Bellec, P., Anton, J.L., Pelegrini-Issac, M., Doyon, J., & Benali, H. (2007). CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magnetic Resonance Imaging, 25(1), 3546.CrossRefGoogle ScholarPubMed
Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L.R., Virta, A., && Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6 Pt 1), 11741185.CrossRefGoogle Scholar
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84C, 320341.Google Scholar
Power, J.D., Schlaggar, B.L., & Petersen, S.E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536551.CrossRefGoogle Scholar
Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1993). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.Google Scholar
Pruim, R.H., Mennes, M., Buitelaar, J.K., & Beckmann, C.F. (2015). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage, 112, 278287.CrossRefGoogle ScholarPubMed
Quigley, M., Cordes, D., Turski, P., Moritz, C., Haughton, V., Seth, R., &&Meyerand, M.E. (2003). Role of the corpus callosum in functional connectivity. AJNR American Journal of Neuroradiology, 24(2), 208212.Google ScholarPubMed
Raichle, M.E., MacLeod, A. M., Snyder, A. Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.CrossRefGoogle ScholarPubMed
Rashid, B., Damaraju, E., Pearlson, G.D., & Calhoun, V.D. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897.CrossRefGoogle ScholarPubMed
Rubinov, M., & Bullmore, E. (2013). Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Sciences, 17(12), 641647.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 10591069.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 20682079.CrossRefGoogle ScholarPubMed
Sakoğlu, Ü., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., & Calhoun, V.D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 351366.CrossRefGoogle Scholar
Schmithorst, V.J., & Holland, S.K. (2004). Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. Journal of Magnetic Resonance Imaging, 19(3), 365368.CrossRefGoogle ScholarPubMed
Schoffelen, J.-M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 18571865.CrossRefGoogle ScholarPubMed
Seghier, M.L., & Friston, K.J. (2013). Network discovery with large DCMs. Neuroimage, 68(C), 181191.CrossRefGoogle Scholar
Siegel, M., Donner, T.H., & Engel, A.K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 12, 121134.Google Scholar
Skare, S., & Andersson, J.L. (2001). On the effects of gating in diffusion imaging of the brain using single shot EPI. Magnetic Resonance in Medicine, 19(8), 11251128.Google Scholar
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1304013045.CrossRefGoogle Scholar
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., & Behrens, T.E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 14871505.CrossRefGoogle ScholarPubMed
Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., & Woolrich, M.W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875891.CrossRefGoogle Scholar
Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., & Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 17141722.CrossRefGoogle ScholarPubMed
Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT Press.Google Scholar
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.CrossRefGoogle ScholarPubMed
Srinivasan, R., Winter, W.R., Ding, J., & Nunez, P.L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166(1), 4152.CrossRefGoogle ScholarPubMed
Stam, C.J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355(1–2), 2528.CrossRefGoogle ScholarPubMed
Stam, C.J. (2014). Modern network science of neurological disorders. [Review]. Nature Reviews Neuroscience, 15(10), 683.CrossRefGoogle Scholar
Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 9299.CrossRefGoogle ScholarPubMed
Stanisz, G.J., Szafer, A., Wright, G.A., & Henkelman, R.M. (1997). An analytical model of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine, 37(1), 103111.CrossRefGoogle Scholar
Stone, J.V. (2004). Independent component analysis: A tutorial introduction. Cambridge, MA: MIT press.Google Scholar
Strother, S.C., Anderson, J.R., Schaper, K.A., Sidtis, J.J., Liow, J.S., Woods, R.P., & Rottenberg, D.A. (1995). Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. “Functional connectivity” of the human motor system studied with [15O]water PET. Journal of Cerebral Blood Flow & Metabolism, 15(5), 738753.CrossRefGoogle Scholar
Thirion, B., Varoquaux, G., Dohmatob, E., & Poline, J.-B. (2014). Which fMRI clustering gives good brain parcellations? [Original Research]. Frontiers in Neuroscience, 8, 167.CrossRefGoogle Scholar
Tournier, J.D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 15321556.CrossRefGoogle ScholarPubMed
van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 1577515786.CrossRefGoogle ScholarPubMed
van den Heuvel, M.P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683696.CrossRefGoogle ScholarPubMed
Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., & Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103, 297321.CrossRefGoogle Scholar
Varela, F., Lachaux, J.P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229239.CrossRefGoogle ScholarPubMed
Vern, B.A., Schuette, W.H., Leheta, B., Juel, V.C., & Radulovacki, M. (1988). Low-frequency oscillations of cortical oxidative metabolism in waking and sleep. Journal of Cerebral Blood Flow & Metabolism, 8(2), 215226.CrossRefGoogle ScholarPubMed
Wang, Y., Wang, Q., Haldar, J.P., Yeh, F.C., Xie, M., Sun, P., & Song, S.K. (2011). Quantification of increased cellularity during inflammatory demyelination. Brain, 134(Pt 12), 35903601.CrossRefGoogle ScholarPubMed
Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of /“small-world/” networks. Nature, 393(6684), 440442.CrossRefGoogle ScholarPubMed
Wheeler-Kingshott, C.A., & Cercignani, M. (2009). About “axial” and “radial” diffusivities. Magnetic Resonance in Medicine, 61(5), 12551260.CrossRefGoogle ScholarPubMed
Yaesoubi, M., Miller, R.L., & Calhoun, V.D. (2015). Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender. Neuroimage, 107, 8594.CrossRefGoogle ScholarPubMed
Yang, H., Long, X.Y., Yang, Y., Yan, H., Zhu, C.Z., Zhou, X.P., & Gong, Q, Y. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 36(1), 144152.CrossRefGoogle ScholarPubMed
Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88C, 7990.Google Scholar
Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zollei, L., Augustinack, J., & Fischl, B. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23.CrossRefGoogle Scholar
Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394400.CrossRefGoogle ScholarPubMed
Cited by