Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-6pl8d Total loading time: 0.305 Render date: 2022-01-24T05:07:41.012Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks

Published online by Cambridge University Press:  01 May 2009

MARY M. MACHULDA*
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
MATTHEW L. SENJEM
Affiliation:
Department of Information Technology, Mayo Clinic, Rochester, Minnesota
STEPHEN D. WEIGAND
Affiliation:
Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
GLENN E. SMITH
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
ROBERT J. IVNIK
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
BRAD F. BOEVE
Affiliation:
Department of Neurology, Mayo Clinic, Rochester, Minnesota
DAVID S. KNOPMAN
Affiliation:
Department of Neurology, Mayo Clinic, Rochester, Minnesota
RONALD C. PETERSEN
Affiliation:
Department of Neurology, Mayo Clinic, Rochester, Minnesota
CLIFFORD R. JACK JR
Affiliation:
Department of Radiology, Mayo Clinic, Rochester, Minnesota
*
*Correspondence and reprint requests to: Mary M. Machulda, Department of Psychiatry and Psychology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905. E-mail: machulda.mary@mayo.edu

Abstract

Functional magnetic resonance imaging (fMRI) shows changes in multiple regions in amnestic mild cognitive impairment (aMCI). The concept of MCI recently evolved to include nonamnestic syndromes, so little is known about fMRI changes in these individuals. This study investigated activation during visual complex scene encoding and recognition in 29 cognitively normal (CN) elderly, 19 individuals with aMCI, and 12 individuals with nonamnestic MCI (naMCI). During encoding, CN activated an extensive network that included bilateral occipital–parietal–temporal cortex; precuneus; posterior cingulate; thalamus; insula; and medial, anterior, and lateral frontal regions. Amnestic MCI activated an anatomic subset of these regions. Non-amnestic MCI activated an even smaller anatomic subset. During recognition, CN activated the same regions observed during encoding except the precuneus. Both MCI groups again activated a subset of the regions activated by CN. During encoding, CN had greater activation than aMCI and naMCI in bilateral temporoparietal and frontal regions. During recognition, CN had greater activation than aMCI in predominantly temporoparietal regions bilaterally, while CN had greater activation than naMCI in larger areas involving bilateral temporoparietal and frontal regions. The diminished parietal and frontal activation in naMCI may reflect compromised ability to perform nonmemory (i.e., attention/executive, visuospatial function) components of the task. (JINS, 2009, 15, 372–382.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boeve, B., Ferman, T., Smith, G., Knopman, D., Jicha, G., Geda, Y., Silber, M., Edland, S., Parisi, J., Dickson, D., Ivnik, R., & Petersen, R. (2004). Mild cognitive impairment preceding dementia with Lewy bodies. Neurology, 62(Suppl 5), A86.Google Scholar
Cabeza, R. (2001). Cognitive neuroscience of aging: Contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277286.CrossRefGoogle ScholarPubMed
Celone, K., Calhoun, V., Dickerson, B., Atri, A., Chua, E., Miller, S., DePeau, K., Rentz, D., Selkoe, D., Blacker, D., Albert, M., & Sperling, R. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. The Journal of Neuroscience, 26(40), 1022210231.CrossRefGoogle ScholarPubMed
Dickerson, B., Salat, D., Bates, J., Atiya, M., Killiany, R., Greve, D., Dale, A., Stern, C., Blacker, D., Albert, M., & Sperling, R. (2004). Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology, 56, 2735.CrossRefGoogle ScholarPubMed
Dickerson, B., Salat, D., Greve, D., Chua, E., Rand-Giovanetti, E., Rentz, D., Bertram, L., Mullin, K., Tanzi, R., Blacker, D., Albert, M., & Sperling, R. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65, 404411.CrossRefGoogle ScholarPubMed
Fletcher, P. & Henson, R. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124, 849881.CrossRefGoogle ScholarPubMed
Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C., & Frackowiak, R. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189210.CrossRefGoogle Scholar
Goekoop, R., Rombouts, S., Jonker, C., Hibbel, A., Knol, D., Truyen, L., Barkhof, F., & Scheltens, P. (2004). Challenging the cholinergic system in mild cognitive impairment: A pharmacological fMRI study. NeuroImage, 23, 14501459.CrossRefGoogle ScholarPubMed
Gutchess, A., Welsh, R., Hedden, T., Bangert, A., Minear, M., Liu, L., & Park, D. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17(1), 8496.CrossRefGoogle ScholarPubMed
Heun, R., Freymann, K., Erb, M., Leube, D., Jessen, F., Kircher, T., & Grodd, W. (2007). Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiology of Aging, 28(3), 404413.CrossRefGoogle ScholarPubMed
Ivnik, R., Malec, J., Smith, G., Tangalos, E., & Petersen, R. (1996). Neuropsychological tests’ norms above age 55: COWAT, BNT, MAE Token, WRAT-R reading, AMNART, Stroop, TMT, and JLO. The Clinical Neuropsychologist, 10, 262278.CrossRefGoogle Scholar
Ivnik, R., Malec, J., Smith, G., Tangalos, E., Petersen, R., Kokmen, E., & Kurland, L. (1992). Mayo’s Older Americans Normative Studies: WAIS-R, WMS-R and AVLT norms for ages 56 through 97. The Clinical Neuropsychologist, 6(Suppl), 1104.CrossRefGoogle Scholar
Johnson, S., Baxter, L., Sussking-Wilder, L., Connor, D., Sabbagh, M., & Caselli, R. (2004). Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia, 42, 980989.CrossRefGoogle ScholarPubMed
Johnson, S., Schmitz, T., Asthana, S., Gluck, M., & Myers, C. (2008). Associative learning over trial activates the hippocampus in healthy elderly but not mild cognitive impairment. Aging, Neuropsychology, and Cognition, 15, 129145.CrossRefGoogle Scholar
Johnson, S., Schmitz, T., Moritz, C., Meyerand, M., Rowley, H., Alexander, A., Hansen, K., Gleason, C., Carlsson, C., Ries, M., Asthana, S., Chen, K., Reiman, E., & Alexander, G. (2006). Activation of brain regions vulnerable to Alzheimer’s disease: The effect of mild cognitive impairment. Neurobiology of Aging, 27, 16041612.CrossRefGoogle ScholarPubMed
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia, PA: Lea & Febiger.Google Scholar
Kokmen, E., Smith, G., Petersen, R., Tangalos, E., & Ivnik, R. (1991). The Short Test of Mental Status. Archives of Neurology, 48, 725728.CrossRefGoogle ScholarPubMed
Lucas, J.A., Ivnik, R.J., Smith, G.E., Bohac, D.L., Tangalos, E.G., Graff-Radford, N.R., & Petersen, R.C. (1998). Mayo’s Older Americans Normative Studies: Category fluency norms. Journal of Clinical and Experimental Neuropsychology, 20, 17.CrossRefGoogle ScholarPubMed
Machielsen, W., Rombouts, S., Barkhof, F., Scheltens, P., & Witter, M. (2000). fMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9, 156164.3.0.CO;2-Q>CrossRefGoogle Scholar
Machulda, M., Ward, H., Borowski, B., Gunter, J., Cha, R., O’Brien, P., Petersen, R., Boeve, B., Knopman, D., Tang-Wai, D., Ivnik, R., Smith, G., Tangalos, E., & Jack, C. (2003). Comparison of memory fMRI response among normal, MCI, and Alzheimer patients. Neurology, 61, 500506.CrossRefGoogle Scholar
Machulda, M., Ward, H., Cha, R., O’Brien, P., & Jack, C. Jr. (2001). Functional inferences vary with the method of analysis in fMRI. NeuroImage, 14, 11221127.CrossRefGoogle ScholarPubMed
Morris, J. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.CrossRefGoogle ScholarPubMed
Petersen, R. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R., Doody, R., Kurz, A., Mohs, R., Morris, J., Rabins, P., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 19851992.CrossRefGoogle ScholarPubMed
Petersen, R., Ivnik, R., Boeve, B., Knopman, D., Smith, G., & Tangalos, E. (2004). Outcome of clinical subtypes of mild cognitive impairment. Neurology, 62(Suppl 5), A295.Google Scholar
Petersen, R., Kokmen, E., Tangalos, E., Ivnik, R.K., & Kurland, L.T. (1990). Mayo Clinic Alzheimer’s Disease Patient Registry. Aging Clinical & Experimental Research, 2(4), 408415.CrossRefGoogle ScholarPubMed
Petersen, R., Smith, G., Waring, S., Ivnik, R., Tangalos, E., & Kokmen, E. (1999). Mild cognitive impairment clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Petrella, J., Krishnan, S., Slavin, M., Tran, T.-T.T., Murty, L., & Doraiswamy, P. (2006). Mild cognitive impairment: Evaluation with 4-T functional MR imaging. Radiology, 240(1), 177186.CrossRefGoogle ScholarPubMed
Rey, A. (1964). L’examen Clinique en Psychologie. (The clinical examination in psychology). Paris, France: Presses Universitaires de France.Google Scholar
Rombouts, S., Scheltens, P., Machielsen, W., Barkhof, F., Hoogenraad, F., Veltman, D., Valk, J., & Witter, M. (1999). Parametric fMRI analysis of visual encoding in the human medial temporal lobe. Hippocampus, 9, 637643.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Saykin, A., Wishart, H., Rabin, L., Flashman, L., McHugh, T.L., Mamourian, A., & Santulli, R. (2004). Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain, 127, 15741583.CrossRefGoogle ScholarPubMed
Senjem, M., Gunter, J., Shiung, M., Petersen, R., & Jack, C.J. (2005). Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. NeuroImage, 26, 600608.CrossRefGoogle ScholarPubMed
Spreen, O. & Strauss, E. (1991). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Wagner, A., Shannon, B., Kahn, I., & Buckner, R. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445453.CrossRefGoogle ScholarPubMed
Wechsler, D. (1981). Wechsler Adult Intelligence Scale—Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1987). Wechsler Memory Scale—Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Whitwell, J., Petersen, R., Negash, S., Weigand, S., Ivnik, R., Knopman, D., Boeve, B., Smith, G., & Jack, C. Jr. (2007). Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Archives of Neurology, 64(8), 11301138.CrossRefGoogle ScholarPubMed
Whitwell, J., Shiung, M., Przybelski, S., Weigand, S., Knopman, D., Boeve, B., Petersen, R., & Jack, C. Jr. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70, 512520.CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., Nordberg, A., Backman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, C., Decarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C.J., Jorm, A., Ritchie, K., Van Duijn, C., Visser, P., & Petersen, R. (2004). Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246.CrossRefGoogle Scholar
Yoshita, M., Fletcher, E., Harvey, D., Ortega, M., Martinez, O., Mungas, D.M., Reed, B.R., & DeCarli, C.S. (2006). Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology, 67(12), 21922198.CrossRefGoogle ScholarPubMed
Zanetti, M., Ballabio, C., Abbate, C., Cutaia, C., Vergani, C., & Bergamaschini, L. (2006). Mild cognitive impairment subtypes and vascular dementia in community-dwelling elderly people: A 3-year follow-up study. Journal of the American Geriatrics Society, 54(4), 580586.CrossRefGoogle ScholarPubMed
61
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *