Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-pkshj Total loading time: 0.583 Render date: 2021-12-03T05:05:33.242Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Decreased White Matter Integrity in Neuropsychologically Defined Mild Cognitive Impairment Is Independent of Cortical Thinning

Published online by Cambridge University Press:  01 July 2013

Nikki H. Stricker*
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
David H. Salat
Affiliation:
Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
Jessica M. Foley
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
Tyler A. Zink
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts
Ida L. Kellison
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts
Craig P. McFarland
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts
Laura J. Grande
Affiliation:
Psychology Service, VA Boston Healthcare System, Boston, Massachusetts Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
Regina E. McGlinchey
Affiliation:
Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
William P. Milberg
Affiliation:
Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
Elizabeth C. Leritz
Affiliation:
Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts Division of Aging, Brigham & Women's Hospital, Boston, Massachusetts
*
Correspondence and reprint requests to: Nikki H. Stricker, VA Boston Medical Center (116B), 150 S. Huntington Avenue, Jamaica Plain, MA 02130. E-mail: stricker@bu.edu

Abstract

Improved understanding of the pattern of white matter changes in early and prodromal Alzheimer's disease (AD) states such as mild cognitive impairment (MCI) is necessary to support earlier preclinical detection of AD, and debate remains whether white matter changes in MCI are secondary to gray matter changes. We applied neuropsychologically based MCI criteria to a sample of normally aging older adults; 32 participants met criteria for MCI and 81 participants were classified as normal control (NC) subjects. Whole-head high resolution T1 and diffusion tensor imaging scans were completed. Tract-Based Spatial Statistics was applied and a priori selected regions of interest were extracted. Hippocampal volume and cortical thickness averaged across regions with known vulnerability to AD were derived. Controlling for cortical thickness, the MCI group showed decreased average fractional anisotropy (FA) and decreased FA in parietal white matter and in white matter underlying the entorhinal and posterior cingulate cortices relative to the NC group. Statistically controlling for cortical thickness, medial temporal FA was related to memory and parietal FA was related to executive functioning. These results provide further support for the potential role of white matter integrity as an early biomarker for individuals at risk for AD and highlight that changes in white matter may be independent of gray matter changes. (JINS, 2013, 19, 1–13)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers & Dementia, 7(3), 270279.CrossRefGoogle Scholar
Albert, M.S., Moss, M.B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7(5), 631639.CrossRefGoogle ScholarPubMed
Bakkour, A., Morris, J.C., Dickerson, B.C. (2009). The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia. Neurology, 72(12), 10481055.CrossRefGoogle ScholarPubMed
Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Smith, S.M. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 10771088.CrossRefGoogle ScholarPubMed
Bosch, B., Arenaza-Urquijo, E.M., Rami, L., Sala-Llonch, R., Junque, C., Sole-Padulles, C., Bartres-Faz, D. (2012). Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiology of Aging, 33(1), 6174.CrossRefGoogle Scholar
Braak, H., Braak, E. (1996). Evolution of the neuropathology of Alzheimer's disease. Acta Neurologica Scandinavica Supplement, 165, 312.CrossRefGoogle ScholarPubMed
Brown, A.D., McMorris, C.A., Longman, R.S., Leigh, R., Hill, M.D., Friedenreich, C.M., Poulin, M.J. (2008). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiology of Aging, 31(12), 20472057.CrossRefGoogle ScholarPubMed
Brun, A., Englund, E. (1986). A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study. Annals of Neurology, 19(3), 253262.CrossRefGoogle ScholarPubMed
Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Catheline, G., Periot, O., Amirault, M., Braun, M., Dartigues, J.F., Auriacombe, S., Allard, M. (2010). Distinctive alterations of the cingulum bundle during aging and Alzheimer's disease. Neurobiology of Aging, 31(9), 15821592.CrossRefGoogle ScholarPubMed
Chang, Y.L., Bondi, M.W., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J. Jr., Jacobson, M.W., Dale, A.M. (2010). Brain substrates of learning and retention in mild cognitive impairment diagnosis and progression to Alzheimer's disease. Neuropsychologia, 48(5), 12371247.CrossRefGoogle ScholarPubMed
Chen, T.F., Chen, Y.F., Cheng, T.W., Hua, M.S., Liu, H.M., Chiu, M.J. (2009). Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer's disease. Human Brain Mapping, 30(11), 38263836.CrossRefGoogle ScholarPubMed
Chua, T.C., Wen, W., Chen, X., Kochan, N., Slavin, M.J., Trollor, J.N., Sachdev, P.S. (2009). Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(7), 602613.CrossRefGoogle ScholarPubMed
Chua, T.C., Wen, W., Slavin, M.J., Sachdev, P.S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: A review. Current Opinion in Neurology, 21(1), 8392.CrossRefGoogle ScholarPubMed
Craig-Schapiro, R., Fagan, A.M., Holtzman, D.M. (2009). Biomarkers of Alzheimer's disease. Neurobiology of Disease, 35(2), 128140.CrossRefGoogle ScholarPubMed
Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194.CrossRefGoogle ScholarPubMed
de la Torre, J.C. (2002). Vascular basis of Alzheimer's pathogenesis. Annals of the New York Academy of Sciences, 977, 196215.CrossRefGoogle ScholarPubMed
Delano-Wood, L., Bondi, M.W., Jak, A.J., Horne, N.R., Schweinsburg, B.C., Frank, L.R., Salmon, D.P. (2010). Stroke risk modifies regional white matter differences in mild cognitive impairment. Neurobiology of Aging, 31(10), 17211731.CrossRefGoogle ScholarPubMed
Delano-Wood, L., Stricker, N.H., Sorg, S.F., Nation, D.A., Jak, A.J., Woods, S.P., Bondi, M.W. (2012). Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. Journal of Alzheimer's Disease, 29(3), 589603.CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. (2000). California Verbal Learning Test, Second Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Fischl, B. (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain, 132(Pt 8), 20482057.CrossRefGoogle ScholarPubMed
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980.CrossRefGoogle ScholarPubMed
Devanand, D.P., Bansal, R., Liu, J., Hao, X., Pradhaban, G., Peterson, B.S. (2012). MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease. Neuroimage, 60(3), 16221629.CrossRefGoogle ScholarPubMed
Dhikav, V., Anand, K.S. (2012). Are vascular factors linked to the development of hippocampal atrophy in Alzheimer's disease? Journal of Alzheimer's Disease, 32(3), 711718.CrossRefGoogle ScholarPubMed
Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Buckner, R.L. (2009). The cortical signature of Alzheimer's disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19(3), 497510.CrossRefGoogle ScholarPubMed
Dickerson, B.C., Stoub, T.R., Shah, R.C., Sperling, R.A., Killiany, R.J., Albert, M.S., Detoledo-Morrell, L. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 76(16), 13951402.CrossRefGoogle ScholarPubMed
Fellgiebel, A., Muller, M.J., Wille, P., Dellani, P.R., Scheurich, A., Schmidt, L.G., Stoeter, P. (2005). Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiology of Aging, 26(8), 11931198.CrossRefGoogle ScholarPubMed
Fennema-Notestine, C., Hagler, D.J. Jr., McEvoy, L.K., Fleisher, A.S., Wu, E.H., Karow, D.S., Dale, A.M. (2009). Structural MRI biomarkers for preclinical and mild Alzheimer's disease. Human Brain Mapping, 30(10), 32383253.CrossRefGoogle ScholarPubMed
Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., Tragl, K.H. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68(4), 288291.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Dale, A.M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355.CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M.I., Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195207.CrossRefGoogle Scholar
Fjell, A.M., Walhovd, K.B., Amlien, I., Bjornerud, A., Reinvang, I., Gjerstad, L., Fladby, T. (2008). Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with mild cognitive impairment. AJNR American Journal of Neuroradiology, 29(6), 11831189.CrossRefGoogle ScholarPubMed
Goldstein, F.C., Mao, H., Wang, L., Ni, C., Lah, J.J., Levey, A.I. (2009). White matter integrity and episodic memory performance in mild cognitive impairment: A diffusion tensor imaging study. Brain Imaging and Behavior, 3(2), 132141.CrossRefGoogle ScholarPubMed
Gomez-Isla, T., Price, J.L., McKeel, D.W. Jr., Morris, J.C., Growdon, J.H., Hyman, B.T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience, 16(14), 44914500.CrossRefGoogle ScholarPubMed
Grambaite, R., Reinvang, I., Selnes, P., Fjell, A.M., Walhovd, K.B., Stenset, V., Fladby, T. (2011). Pre-dementia memory impairment is associated with white matter tract affection. Journal of the International Neuropsychological Society, 17(1), 143153.CrossRefGoogle ScholarPubMed
Greve, D.N., Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 6372.CrossRefGoogle ScholarPubMed
Griffith, H.R., Netson, K.L., Harrell, L.E., Zamrini, E.Y., Brockington, J.C., Marson, D.C. (2006). Amnestic mild cognitive impairment: Diagnostic outcomes and clinical prediction over a two-year time period. Journal of the International Neuropsychological Society, 12(2), 166175.CrossRefGoogle Scholar
Guo, X., Pantoni, L., Simoni, M., Bengtsson, C., Bjorkelund, C., Lissner, L., Skoog, I. (2009). Blood pressure components and changes in relation to white matter lesions: A 32-year prospective population study. Hypertension, 54(1), 5762.CrossRefGoogle ScholarPubMed
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, R.K., Miller, S.W., Taylor, M.J., Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian Adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Holm, L., Cassidy, J.D., Carroll, L.J., Borg, J. (2005). Summary of the WHO Collaborating Centre for Neurotrauma Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 37(3), 137141.CrossRefGoogle ScholarPubMed
Huang, H., Fan, X., Weiner, M., Martin-Cook, K., Xiao, G., Davis, J., Diaz-Arrastia, R. (2012). Distinctive disruption patterns of white matter tracts in Alzheimer's disease with full diffusion tensor characterization. Neurobiology of Aging, 33(9), 20292045.CrossRefGoogle ScholarPubMed
Huang, J., Auchus, A.P. (2007). Diffusion tensor imaging of normal appearing white matter and its correlation with cognitive functioning in mild cognitive impairment and Alzheimer's disease. Annals of the New York Academy of Sciences, 1097, 259264.CrossRefGoogle ScholarPubMed
Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurology, 9(1), 119128.CrossRefGoogle ScholarPubMed
Jacobs, H.I., Van Boxtel, M.P., Jolles, J., Verhey, F.R., Uylings, H.B. (2012). Parietal cortex matters in Alzheimer's disease: An overview of structural, functional and metabolic findings. Neuroscience and Biobehavioral Reviews, 36(1), 297309.CrossRefGoogle ScholarPubMed
Jak, A.J., Bangen, K.J., Wierenga, C.E., Delano-Wood, L., Corey-Bloom, J., Bondi, M.W. (2009). Contributions of neuropsychology and neuroimaging to understanding clinical subtypes of mild cognitive impairment. International Review of Neurobiology, 84, 81103.CrossRefGoogle ScholarPubMed
Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368375.CrossRefGoogle ScholarPubMed
Kim, S.H., Park, J.S., Ahn, H.J., Seo, S.W., Lee, J.M., Kim, S.T., Na, D.L. (2011). Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: Correlates with cognitive and motor deficits. Journal of Neuroimaging, 21(4), 317324.CrossRefGoogle ScholarPubMed
Lawton, M.P., Brody, E.M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist, 9(3), 179186.CrossRefGoogle ScholarPubMed
Leritz, E.C., Salat, D.H., Milberg, W.P., Williams, V.J., Chapman, C.E., Grande, L.J., McGlinchey, R.E. (2010). Variation in blood pressure is associated with white matter microstructure but not cognition in African Americans. Neuropsychology, 24(2), 199208.CrossRefGoogle Scholar
Leritz, E.C., Salat, D.H., Williams, V.J., Schnyer, D.M., Rudolph, J.L., Lipsitz, L., Milberg, W.P. (2010). Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults. Neuroimage, 54(4), 26592671.CrossRefGoogle Scholar
Leszek, J., Sochocka, M., Gasiorowski, K. (2012). Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer's disease. Journal of the Neurological Sciences, 323(1-2), 2532.CrossRefGoogle ScholarPubMed
Liu, Y., Spulber, G., Lehtimaki, K.K., Kononen, M., Hallikainen, I., Grohn, H., Soininen, H. (2011). Diffusion tensor imaging and tract-based spatial statistics in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 32(9), 15581571.CrossRefGoogle ScholarPubMed
Medina, D., DeToledo-Morrell, L., Urresta, F., Gabrieli, J.D., Moseley, M., Fleischman, D., Stebbins, G.T. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging, 27(5), 663672.CrossRefGoogle Scholar
O'Dwyer, L., Lamberton, F., Bokde, A.L., Ewers, M., Faluyi, Y.O., Tanner, C., Hampel, H. (2011). Multiple indices of diffusion identifies white matter damage in mild cognitive impairment and Alzheimer's disease. PLoS One, 6(6), e21745.CrossRefGoogle ScholarPubMed
Parente, D.B., Gasparetto, E.L., da Cruz, L.C. Jr., Domingues, R.C., Baptista, A.C., Carvalho, A.C., Domingues, R.C. (2008). Potential role of diffusion tensor MRI in the differential diagnosis of mild cognitive impairment and Alzheimer's disease. AJR American Journal of Roentgenology, 190(5), 13691374.CrossRefGoogle ScholarPubMed
Pedraza, O., Clark, J.H., O'Bryant, S.E., Smith, G.E., Ivnik, R.J., Graff-Radford, N.R., Lucas, J.A. (2012). Diagnostic validity of age and education corrections for the Mini-Mental State Examination in older African Americans. Journal of the American Geriatric Society, 60(2), 328331.CrossRefGoogle ScholarPubMed
Richard, F., Pasquier, F. (2012). Can the treatment of vascular risk factors slow cognitive decline in Alzheimer's disease patients? Journal of Alzheimer's Disease, 32(3), 765772.CrossRefGoogle ScholarPubMed
Rose, S.E., McMahon, K.L., Janke, A.L., O'Dowd, B., de Zubicaray, G., Strudwick, M.W., Chalk, J.B. (2006). MRI diffusion indices and neuropsychological performance in amnestic mild cogntive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 11221128.CrossRefGoogle Scholar
Rountree, S.D., Waring, S.C., Chan, W.C., Lupo, P.J., Darby, E.J., Doody, R.S. (2007). Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: Prognosis and conversion to dementia. Dementia and Geriatric Cognitive Disorders, 24(6), 476482.CrossRefGoogle Scholar
Ruff, R.M., Allen, C.C. (1996). Ruff 2 & 7 Selective Attention Test: Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Salat, D.H., Lee, S.Y., van der Kouwe, A.J., Greve, D.N., Fischl, B., Rosas, H.D. (2009). Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage, 48(1), 2128.CrossRefGoogle ScholarPubMed
Salat, D.H., Tuch, D.S., van der Kouwe, A.J., Greve, D.N., Pappu, V., Lee, S.Y., Rosas, H.D. (2010). White matter pathology isolates the hippocampal formation in Alzheimer's disease. Neurobiology of Aging, 31(2), 244256.CrossRefGoogle ScholarPubMed
Salat, D.H., Williams, V.J., Leritz, E.C., Schnyer, D.M., Rudolph, J.L., Lipsitz, L.A., Milberg, W.P. (2012). Inter-individual variation in blood pressure is associated with regional white matter integrity in generally healthy older adults. Neuroimage, 59(1), 181192.CrossRefGoogle ScholarPubMed
Salmon, D.P., Thomas, R.G., Pay, M.M., Booth, A., Hofstetter, C.R., Thal, L.J., Katzman, R. (2002). Alzheimer's disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59(7), 10221028.CrossRefGoogle ScholarPubMed
Schneider, J.A., Arvanitakis, Z., Leurgans, S.E., Bennett, D.A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology, 66(2), 200208.CrossRefGoogle ScholarPubMed
Scola, E., Bozzali, M., Agosta, F., Magnani, G., Franceschi, M., Sormani, M.P., Falini, A. (2010). A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. Journal of Neurology, Neurosurgery, and Psychiatry, 81(7), 798805.CrossRefGoogle Scholar
Selnes, P., Aarsland, D., Bjornerud, A., Gjerstad, L., Wallin, A., Hessen, E., Fladby, T. (2013). Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. Journal of Alzheimer's Disease, 33(3), 723736.CrossRefGoogle ScholarPubMed
Selnes, P., Fjell, A.M., Gjerstad, L., Bjornerud, A., Wallin, A., Due-Tonnessen, P., Fladby, T. (2012). White matter imaging changes in subjective and mild cognitive impairment. Alzheimer's & Dementia, 8(5 Suppl), S112S121.CrossRefGoogle ScholarPubMed
Shi, F., Liu, B., Zhou, Y., Yu, C., Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus, 19(11), 10551064.CrossRefGoogle ScholarPubMed
Shim, Y.S., Yoon, B., Shon, Y.M., Ahn, K.J., Yang, D.W. (2008). Difference of the hippocampal and white matter microalterations in MCI patients according to the severity of subcortical vascular changes: Neuropsychological correlates of diffusion tensor imaging. Clinical Neurology and Neurosurgery, 110(6), 552561.CrossRefGoogle ScholarPubMed
Shu, N., Wang, Z., Qi, Z., Li, K., He, Y. (2011). Multiple diffusion indices reveals white matter degeneration in Alzheimer's disease and mild cognitive impairment: A tract-based spatial statistics study. Journal of Alzheimer's Disease, 26(Suppl 3), 275285.CrossRefGoogle ScholarPubMed
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Behrens, T.E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 14871505.CrossRefGoogle ScholarPubMed
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208S219.CrossRefGoogle ScholarPubMed
Stricker, N.H., Schweinsburg, B.C., Delano-Wood, L., Wierenga, C.E., Bangen, K.J., Haaland, K.Y., Bondi, M.W. (2009). Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer's disease supports retrogenesis. Neuroimage, 45(1), 1016.CrossRefGoogle ScholarPubMed
Strittmatter, W.J., Roses, A.D. (1995). Apolipoprotein E and Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 92(11), 47254727.CrossRefGoogle ScholarPubMed
Teng, E., Tingus, K.D., Lu, P.H., Cummings, J.L. (2009). Persistence of neuropsychological testing deficits in mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 28(2), 168178.CrossRefGoogle ScholarPubMed
Trenerry, M.R., Crosson, B., DeBoe, J., Leber, W.R. (1989). Stroop Neuropsychological Screening Test: Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Walhovd, K.B., Fjell, A.M., Amlien, I., Grambaite, R., Stenset, V., Bjornerud, A., Fladby, T. (2009). Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal-parietal memory network. Neuroimage, 45(1), 215223.CrossRefGoogle ScholarPubMed
Wang, L., Goldstein, F.C., Veledar, E., Levey, A.I., Lah, J.J., Meltzer, C.C., Mao, H. (2009). Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. AJNR American Journal of Neuroradiology, 30(5), 893899.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997a). Wechsler Adult Inteligence Scale - third edition manual. The Psychological Corporation.Google Scholar
Wechsler, D. (1997b). Wechsler Memory Scale - third edition manual. The Psychological Corporation.Google Scholar
Wenham, P.R., Price, W.H., Blandell, G. (1991). Apolipoprotein E genotyping by one-stage PCR. Lancet, 337(8750), 11581159.CrossRefGoogle ScholarPubMed
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 3749.CrossRefGoogle ScholarPubMed
Zhang, Y., Schuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., Weiner, M.W. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 1319.CrossRefGoogle ScholarPubMed
Zhuang, L., Sachdev, P.S., Trollor, J.N., Kochan, N.A., Reppermund, S., Brodaty, H., Wen, W. (2012). Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology, 79(8), 748754.CrossRefGoogle ScholarPubMed
Zhuang, L., Wen, W., Zhu, W., Trollor, J., Kochan, N., Crawford, J., Sachdev, P. (2010). White matter integrity in mild cognitive impairment: A tract-based spatial statistics study. Neuroimage, 53(1), 1625.CrossRefGoogle ScholarPubMed
22
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Decreased White Matter Integrity in Neuropsychologically Defined Mild Cognitive Impairment Is Independent of Cortical Thinning
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Decreased White Matter Integrity in Neuropsychologically Defined Mild Cognitive Impairment Is Independent of Cortical Thinning
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Decreased White Matter Integrity in Neuropsychologically Defined Mild Cognitive Impairment Is Independent of Cortical Thinning
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *