Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-4v6tc Total loading time: 0.423 Render date: 2023-02-01T20:53:50.565Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Conditional Effects of Lifetime Alcohol Consumption on Methamphetamine-Associated Neurocognitive Performance

Published online by Cambridge University Press:  10 June 2019

Rowan Saloner
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 102, San Diego, CA 92120, USA Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Emily W. Paolillo
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 102, San Diego, CA 92120, USA Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Anya Umlauf
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
David J. Moore
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Robert K. Heaton
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Igor Grant
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Mariana Cherner*
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
The TMARC Group
Department of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
Correspondence and reprint requests to: Mariana Cherner, Ph.D., Professor of Psychiatry, University of California, HIV Neurobehavioral Research Program, 220 Dickinson St, Suite B, MC8231, San Diego, CA 92103-8231, USA. E-mail:



Methamphetamine (MA) dependence contributes to neurotoxicity and neurocognitive deficits. Although combined alcohol and MA misuse is common, how alcohol consumption relates to neurocognitive performance among MA users remains unclear. We hypothesized that alcohol and MA use would synergistically diminish neurocognitive functioning, such that greater reported alcohol consumption would exert larger negative effects on neurocognition among MA-dependent individuals compared to MA-nonusing persons.


Eighty-seven MA-dependent (MA+) and 114 MA-nonusing (MA−) adults underwent neuropsychological and substance use assessments. Linear and logistic regressions examined the interaction between MA status and lifetime average drinks per drinking day on demographically corrected global neurocognitive T scores and impairment rates, controlling for recent alcohol use, lifetime cannabis use, WRAT reading performance, and lifetime depression.


MA+ displayed moderately higher rates of impairment and lower T scores compared to MA−. Lifetime alcohol use significantly interacted with MA status to predict global impairment (ORR = 0.70, p = .003) such that greater lifetime alcohol use increased likelihood of impairment in MA−, but decreased likelihood of impairment in MA+. Greater lifetime alcohol use predicted poorer global T scores among MA− (b = −0.44, p = .030) but not MA+ (b = 0.08, p = .586).


Contrary to expectations, greater lifetime alcohol use related to reduced risk of neurocognitive impairment among MA users. Findings are supported by prior research identifying neurobiological mechanisms by which alcohol may attenuate stimulant-driven vasoconstriction and brain thermotoxicity. Replication and examination of neurophysiologic mechanisms underlying alcohol use in the context of MA dependence are warranted to elucidate whether alcohol confers a degree of neuroprotection.

Regular Research
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abdul Muneer, P.M., Alikunju, S., Szlachetka, A.M., & Haorah, J. (2011a). Methamphetamine inhibits the glucose uptake by human neurons and astrocytes: Stabilization by acetyl-L-carnitine. PLoS One, 6(4), e19258. doi: 10.1371/journal.pone.0019258.CrossRefGoogle ScholarPubMed
Abdul Muneer, P.M., Alikunju, S., Szlachetka, A.M., Mercer, A.J., & Haorah, J. (2011b). Ethanol impairs glucose uptake by human astrocytes and neurons: Protective effects of acetyl-L-carnitine. International Journal of Physiology, Pathophysiology and Pharmacology, 3(1), 4856.Google ScholarPubMed
Abi-Saab, D., Beauvais, J., Mehm, J., Brody, M., Gottschalk, C., & Kosten, T.R. (2005). The effect of alcohol on the neuropsychological functioning of recently abstinent cocaine-dependent subjects. The American Journal on Addictions, 14(2), 166178. doi: 10.1080/10550490590924854.CrossRefGoogle ScholarPubMed
Althobaiti, Y.S. & Sari, Y. (2016). Alcohol interactions with psychostimulants: An overview of animal and human studies. Journal of Addiction Research and Therapy, 7(3). doi: 10.4172/2155-6105.1000281.CrossRefGoogle Scholar
Bau, P.F., Bau, C.H., Naujorks, A.A., & Rosito, G.A. (2005). Early and late effects of alcohol ingestion on blood pressure and endothelial function. Alcohol, 37(1), 5358. doi: 10.1016/j.alcohol.2005.10.034.CrossRefGoogle ScholarPubMed
Bechara, A. & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18(1), 152162. doi: 10.1037/0894-4105.18.1.152.CrossRefGoogle ScholarPubMed
Beck, A., Steer, R., & Brown, G. (1996). Manual for Beck Depression Inventory II (BDI-II). San Antonio, TX: Psychology Corporation.Google Scholar
Bernardin, F., Maheut-Bosser, A., & Paille, F. (2014). Cognitive impairments in alcohol-dependent subjects. Front Psychiatry, 5, 78. doi: 10.3389/fpsyt.2014.00078.CrossRefGoogle ScholarPubMed
Blackstone, K., Moore, D.J., Franklin, D.R., Clifford, D.B., Collier, A.C., Marra, C.M., Gelman, B.B., McArthur, J.C., Morgello, S., Simpson, D.M., Ellis, R.J., Atkinson, J.H., Grant, I., &Heaton, R.K. (2012). Defining neurocognitive impairment in HIV: Deficit scores versus clinical ratings. The Clinical Neuropsychologist, 26(6), 894908. doi: 10.1080/13854046.2012.694479.CrossRefGoogle ScholarPubMed
Bolla, K.I., Funderburk, F.R., & Cadet, J.L. (2000). Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology, 54(12), 22852292.CrossRefGoogle ScholarPubMed
Bolla, K.I., Rothman, R., & Cadet, J.L. (1999). Dose-related neurobehavioral effects of chronic cocaine use. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(3), 361369. doi: 10.1176/jnp.11.3.361.CrossRefGoogle ScholarPubMed
Britton, A., Singh-Manoux, A., & Marmot, M. (2004). Alcohol consumption and cognitive function in the Whitehall II Study. American Journal of Epidemiology, 160(3), 240247. doi: 10.1093/aje/kwh206.CrossRefGoogle ScholarPubMed
Brown, P.L., Wise, R.A., & Kiyatkin, E.A. (2003). Brain hyperthermia is induced by methamphetamine and exacerbated by social interaction. The Journal of Neuroscience, 23(9), 39243929.CrossRefGoogle ScholarPubMed
Brust, J.C.M. (2010). Ethanol and cognition: Indirect effects, neurotoxicity and neuroprotection: A review. International Journal of Environmental Research and Public Health, 7(4), 15401557. doi: 10.3390/ijerph7041540.CrossRefGoogle ScholarPubMed
Bujarski, S., Roche, D.J., Lunny, K., Moallem, N.R., Courtney, K.E., Allen, V., Hartwell, E., Leventhal, A., Rohrbaugh, T., & Ray, L.A. (2014). The relationship between methamphetamine and alcohol use in a community sample of methamphetamine users. Drug and Alcohol Dependence, 142, 127132. doi: 10.1016/j.drugalcdep.2014.06.004.CrossRefGoogle Scholar
Cadet, J.L., Jayanthi, S., & Deng, X. (2003). Speed kills: Cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. The FASEB Journal, 17(13), 17751788. doi: 10.1096/fj.03-0073rev.CrossRefGoogle ScholarPubMed
Caetano, R. & Weisner, C. (1995). The association between DSM-III-R alcohol dependence, psychological distress and drug use. Addiction, 90(3), 351359.CrossRefGoogle ScholarPubMed
Carey, C.L., Woods, S.P., Gonzalez, R., Conover, E., Marcotte, T.D., Grant, I., & Heaton, R.K. (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. Journal of Clinical and Experimental Neuropsychology, 26(3), 307319. doi: 10.1080/13803390490510031.CrossRefGoogle ScholarPubMed
Chang, L., Ernst, T., Speck, O., Patel, H., DeSilva, M., Leonido-Yee, M., & Miller, E.N. (2002). Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Research, 114(2), 6579.CrossRefGoogle ScholarPubMed
Cherner, M., Suarez, P., Casey, C., Deiss, R., Letendre, S., Marcotte, T., Vaida, F., Atkinson, J.H., Grant, I., Heaton, R.K., & HNRC Group (2010). Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. Drug and Alcohol Dependence, 106(2–3), 154163. doi: 10.1016/j.drugalcdep.2009.08.010.CrossRefGoogle Scholar
Dawson, D.A., Grant, B.F., & Li, T.K. (2005). Quantifying the risks associated with exceeding recommended drinking limits. Alcoholism: Clinical and Experimental Research, 29(5), 902908.CrossRefGoogle ScholarPubMed
Dean, A.C., Groman, S.M., Morales, A.M., & London, E.D. (2013). An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259274. doi: 10.1038/npp.2012.179.CrossRefGoogle ScholarPubMed
Elias, P.K., Elias, M.F., D’Agostino, R.B., Silbershatz, H., & Wolf, P.A. (1999). Alcohol consumption and cognitive performance in the Framingham Heart study. American Journal of Epidemiology, 150(6), 580589.CrossRefGoogle ScholarPubMed
Farré, M., De La Torre, R., González, M.L., Terán, M.T., Roset, P.N., Menoyo, E., & Camí, J. (1997). Cocaine and alcohol interactions in humans: Neuroendocrine effects and cocaethylene metabolism. Journal of Pharmacology and Experimental Therapeutics, 283(1), 164176.Google ScholarPubMed
Furr, C.D., Delva, J., & Anthony, J.C. (2000). The suspected association between methamphetamine (‘ice’) smoking and frequent episodes of alcohol intoxication: Data from the 1993 National Household Survey on Drug Abuse. Drug and Alcohol Dependence, 59(1), 8993.CrossRefGoogle Scholar
Goldstein, R.Z., Leskovjan, A.C., Hoff, A.L., Hitzemann, R., Bashan, F., Khalsa, S.S., Wang, G.J., Fowler, J.S., & Volkow, N.D. (2004). Severity of neuropsychological impairment in cocaine and alcohol addiction: Association with metabolism in the prefrontal cortex. Neuropsychologia, 42(11), 14471458. doi: 10.1016/j.neuropsychologia.2004.04.002CrossRefGoogle ScholarPubMed
Gonzalez, R., Bechara, A., & Martin, E.M. (2007). Executive functions among individuals with methamphetamine or alcohol as drugs of choice: Preliminary observations. Journal of Clinical and Experimental Neuropsychology, 29(2), 155159. doi: 10.1080/13803390600582446CrossRefGoogle ScholarPubMed
Gonzalez, R., Rippeth, J.D., Carey, C.L., Heaton, R.K., Moore, D.J., Schweinsburg, B.C., Cherner, M., & Grant, I. (2004). Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug and Alcohol Dependence, 76(2), 181190. doi: 10.1016/j.drugalcdep.2004.04.014CrossRefGoogle ScholarPubMed
Gorelick, P.B. (1987). Alcohol and stroke. Stroke, 18(1), 268271.CrossRefGoogle ScholarPubMed
Gottschalk, P.C. & Kosten, T.R. (2002). Cerebral perfusion defects in combined cocaine and alcohol dependence. Drug and Alcohol Dependence, 68(1), 95104.CrossRefGoogle ScholarPubMed
Grant, I. (1987). Alcohol and the brain: Neuropsychological correlates. Journal of Consulting and Clinical Psychology, 55(3), 310324. doi: 10.1037/0022-006X.55.3.310CrossRefGoogle ScholarPubMed
Gross, A.L., Rebok, G.W., Ford, D.E., Chu, A.Y., Gallo, J.J., Liang, K.Y., Meoni, L.A., Shihab, H.M., Wang, N.Y., & Klag, M.J. (2011). Alcohol consumption and domain-specific cognitive function in older adults: Longitudinal data from the Johns Hopkins Precursors study. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 66(1), 3947. doi: 10.1093/geronb/gbq062CrossRefGoogle Scholar
Halkitis, P.N., Green, K.A., & Mourgues, P. (2005). Longitudinal investigation of methamphetamine use among gay and bisexual men in New York City: Findings from Project BUMPS. Journal of Urban Health, 82(1 Suppl 1), i1825. doi: 10.1093/jurban/jti020CrossRefGoogle ScholarPubMed
Hart, C.L., Marvin, C.B., Silver, R., & Smith, E.E. (2012). Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology, 37(3), 586608. doi: 10.1038/npp.2011.276CrossRefGoogle ScholarPubMed
Heaton, R.K., Miller, S.W., Taylor, M.J., & Grant, I. (2004). Revised Comprehensive Norms for an Expanded Halstead Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Heaton, R.K., Taylor, M.J., & Manly, J. (2003). Demographic effects and use of demographically corrected norms with the WAIS-III and WMS-III, In Clinical interpretation of the WAIS-III and WMS-III, (pp. 181210). San Diego, CA, USA: Academic Press.CrossRefGoogle Scholar
Ho, E.L., Josephson, S.A., Lee, H.S., & Smith, W.S. (2009). Cerebrovascular complications of methamphetamine abuse. Neurocrit Care, 10(3), 295305. doi: 10.1007/s12028-008-9177-5CrossRefGoogle ScholarPubMed
Horowitz, J.M. & Torres, G. (1999). Cocaethylene: Effects on brain systems and behavior. Addiction Biology, 4(2), 127140. doi: 10.1080/13556219971632CrossRefGoogle ScholarPubMed
Janis, L.S., Hoane, M.R., Conde, D., Fulop, Z., & Stein, D.G. (1998). Acute ethanol administration reduces the cognitive deficits associated with traumatic brain injury in rats. Journal of Neurotrauma, 15(2), 105115. doi: 10.1089/neu.1998.15.105CrossRefGoogle ScholarPubMed
Johanson, C.E., Frey, K.A., Lundahl, L.H., Keenan, P., Lockhart, N., Roll, J., Galloway, G.P., Koeppe, R.A., Kilbourn, M.R., Robbins, T., & Schuster, C.R. (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berlin), 185(3), 327338. doi: 10.1007/s00213-006-0330-6CrossRefGoogle ScholarPubMed
Kalapatapu, R.K., Ventura, M.I., & Barnes, D.E. (2017). Lifetime alcohol use and cognitive performance in older adults. Journal of Addictive Diseases, 36(1), 3847. doi: 10.1080/10550887.2016.1245029CrossRefGoogle ScholarPubMed
Kalechstein, A.D., Newton, T.F., & Green, M. (2003). Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 215220. doi: 10.1176/jnp.15.2.215CrossRefGoogle ScholarPubMed
Kirkpatrick, M.G., Gunderson, E.W., Levin, F.R., Foltin, R.W., & Hart, C.L. (2012). Acute and residual interactive effects of repeated administrations of oral methamphetamine and alcohol in humans. Psychopharmacology (Berl), 219(1), 191204. doi: 10.1007/s00213-011-2390-5CrossRefGoogle ScholarPubMed
Kiyatkin, E.A. & Sharma, H.S. (2009). Acute methamphetamine intoxication: Brain hyperthermia, blood–brain barrier, brain edema, and morphological cell abnormalities. International Review of Neurobiology, 88, 65100. doi: 10.1016/s0074-7742(09)88004-5CrossRefGoogle ScholarPubMed
Lawton-Craddock, A., Nixon, S.J., & Tivis, R. (2003). Cognitive efficiency in stimulant abusers with and without alcohol dependence. Alcoholism: Clinical and Experimental Research, 27(3), 457464. doi: 10.1097/01.ALC.0000056620.98842.E6CrossRefGoogle ScholarPubMed
Lee, J.A., Schoener, E.P., Nielsen, D.W., Kelly, A.R., Lin, W.N., & Berman, R.F. (1990). Alcohol and the auditory brain-stem response, brain temperature, and blood alcohol curves: Explanation of a paradox. Electroencephalography and Clinical Neurophysiology, 77(5), 362375.CrossRefGoogle ScholarPubMed
Liang, M., Liu, Y., Zheng, N., Ananda, S., & Liu, L. (2012). Distribution of methamphetamine and its metabolite amphetamine in acute and subacute ethanol-methamphetamine combination abuse model rats. Journal of Analytical Toxicology, 36(1), 3035. doi: 10.1093/jat/bkr007CrossRefGoogle ScholarPubMed
Mahoney, J.J., Kalechstein, A.D., De Marco, A.P., Newton, T.F., & De La Garza, R. (2017). The relationship between premorbid IQ and neurocognitive functioning in individuals with cocaine use disorders. Neuropsychology, 31(3), 311318. doi: 10.1037/neu0000344CrossRefGoogle ScholarPubMed
McCann, U.D., Kuwabara, H., Kumar, A., Palermo, M., Abbey, R., Brasic, J., Ye, W., Alexander, M., Dannals, R.F., Wong, D.F., & Ricaurte, G.A. (2008). Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse, 62(2), 91100. doi: 10.1002/syn.20471CrossRefGoogle ScholarPubMed
Mendelson, J., Jones, R.T., Upton, R., & Jacob, P. 3rd (1995). Methamphetamine and ethanol interactions in humans. Clinical Pharmacology & Therapeutics, 57(5), 559568. doi: 10.1016/0009-9236(95)90041-1CrossRefGoogle ScholarPubMed
National Institute on Alcohol Abuse and Alcoholism (U.S.) (2005). Helping Patients Who Drink Too Much. A Clinician’s Guide. Washington, D.C.: National Institutes of Health, U.S. Department of Health and Human Services.Google Scholar
Neafsey, E.J. & Collins, M.A. (2011). Moderate alcohol consumption and cognitive risk. Neuropsychiatric Disease and Treatment, 7, 465484. doi: 10.2147/NDT.S23159CrossRefGoogle ScholarPubMed
Norman, M.A., Moore, D.J., Taylor, M., Franklin, D. Jr., Cysique, L., Ake, C., Lazarretto, D., Vaida, F., Heaton, R.K., & HNRC Group (2011). Demographically corrected norms for African Americans and Caucasians on the Hopkins verbal learning test-revised, brief visuospatial memory test-revised, stroop color and word test, and Wisconsin Card Sorting Test 64-Card Version. Journal of Clinical and Experimental Neuropsychology, 33(7), 793804. doi: 10.1080/13803395.2011.559157CrossRefGoogle ScholarPubMed
Oscar-Berman, M. & Marinkovic, K. (2003). Alcoholism and the brain: An overview. Alcohol Research & Health, 27(2), 125133.Google ScholarPubMed
Oscar-Berman, M., Valmas, M.M., Sawyer, K.S., Ruiz, S.M., Luhar, R.B., & Gravitz, Z.R. (2014). Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism. Handbook of Clinical Neurology, 125, 183210. doi: 10.1016/B978-0-444-62619-6.00012-4CrossRefGoogle ScholarPubMed
Park, D. & Nordahl, T. (2014). Methamphetamine and Dave’s story. Journal of Addiction Research and Therapy, 5(1). doi: 10.4172/2155-6105.1000e123CrossRefGoogle Scholar
Perez-Reyes, M., White, W.R., McDonald, S.A., & Hicks, R.E. (1992). Interaction between ethanol and dextroamphetamine: Effects on psychomotor performance. Alcoholism: Clinical and Experimental Research, 16(1), 7581.CrossRefGoogle ScholarPubMed
Piano, M.R. (2017). Alcohol’s effects on the cardiovascular system. Alcohol Research, 38(2), 219241.Google ScholarPubMed
Potvin, S., Stavro, K., Rizkallah, E., & Pelletier, J. (2014). Cocaine and cognition: A systematic quantitative review. Journal of Addiction Medicine, 8(5), 368376. doi: 10.1097/adm.0000000000000066CrossRefGoogle ScholarPubMed
Renaud, S.C. & Ruf, J.C. (1996). Effects of alcohol on platelet functions. Clinica Chimica Acta, 246(1–2), 7789.CrossRefGoogle ScholarPubMed
Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., &Group, H. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 114. doi: 10.1017/S1355617704101021CrossRefGoogle ScholarPubMed
Robinson, J.E., Heaton, R.K., & O’Malley, S.S. (1999). Neuropsychological functioning in cocaine abusers with and without alcohol dependence. Journal of the International Neuropsychological Society, 5(1), 1019.CrossRefGoogle ScholarPubMed
Rodgers, B., Windsor, T.D., Anstey, K.J., Dear, K.B., Jorm, A.F., & Christensen, H. (2005). Non-linear relationships between cognitive function and alcohol consumption in young, middle-aged and older adults: The PATH Through Life Project. Addiction, 100(9), 12801290. doi: 10.1111/j.1360-0443.2005.01158.xCrossRefGoogle ScholarPubMed
Rosselli, M. & Simmers, C.P. (2016). Effects of alcohol in chronic cocaine abuse: A follow up study. Journal of Drug Abuse, 2(1), 111.CrossRefGoogle Scholar
Roussotte, F.F., Bramen, J.E., Nunez, S.C., Quandt, L.C., Smith, L., O’Connor, M.J., Bookheimer, S.Y., & Sowell, E.R. (2011). Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: The effects of methamphetamine, alcohol, and polydrug exposure. Neuroimage, 54(4), 30673075. doi: 10.1016/j.neuroimage.2010.10.072CrossRefGoogle ScholarPubMed
Sajja, R.K., Rahman, S., & Cucullo, L. (2016). Drugs of abuse and blood–brain barrier endothelial dysfunction: A focus on the role of oxidative stress. Journal of Cerebral Blood Flow & Metabolism, 36(3), 539554. doi: 10.1177/0271678X15616978CrossRefGoogle ScholarPubMed
Scott, J.C., Woods, S.P., Matt, G.E., Meyer, R.A., Heaton, R.K., Atkinson, J.H., & Grant, I. (2007). Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychology Review, 17(3), 275297. doi: 10.1007/s11065-007-9031-0CrossRefGoogle ScholarPubMed
Sowell, E.R., Leow, A.D., Bookheimer, S.Y., Smith, L.M., O’Connor, M.J., Kan, E., Rosso, C., Houston, S., Dinov, I.D., & Thompson, P.M. (2010). Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. The Journal of Neuroscience, 30(11), 38763885. doi: 10.1523/JNEUROSCI.4967-09.2010CrossRefGoogle Scholar
Spitzer, R., Williams, J., Gibbon, M., & First, M. (1995). Structured Clinical Interview for DSM-IV. Washington, DC: American Psychiatric Press.Google Scholar
Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203213. doi: 10.1111/j.1369-1600.2011.00418.xCrossRefGoogle ScholarPubMed
Sullivan, E.V., Harris, R.A., & Pfefferbaum, A. (2010). Alcohol’s effects on brain and behavior. Alcohol Research & Health, 33(1–2), 127143.Google ScholarPubMed
Syapin, P.J., Hickey, W.F., & Kane, C.J.M. (2005). Alcohol brain damage and neuroinflammation: Is there a connection? Alcoholism: Clinical & Experimental Research, 29(6), 10801089. doi: 10.1097/01.alc.0000167961.39176.e6CrossRefGoogle Scholar
Taylor, A.N., Romeo, H.E., Beylin, A.V., Tio, D.L., Rahman, S.U., & Hovda, D.A. (2002). Alcohol consumption in traumatic brain injury: Attenuation of TBI-induced hyperthermia and neurocognitive deficits. Journal of Neurotrauma, 19(12), 15971608. doi: 10.1089/089771502762300256CrossRefGoogle ScholarPubMed
Topiwala, A., Allan, C.L., Valkanova, V., Zsoldos, E., Filippini, N., Sexton, C., Mahmood, A., Fooks, P., Singh-Manoux, A., Mackay, C.E., Kivimäki, M., & Ebmeier, K.P. (2017). Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: Longitudinal cohort study. BMJ, 357, j2353. doi: 10.1136/bmj.j2353CrossRefGoogle ScholarPubMed
Turowski, P. & Kenny, B.A. (2015). The bloodbrain barrier and methamphetamine: Open sesame? Frontiers in Neuroscience, 9, 156. doi: 10.3389/fnins.2015.00156Google ScholarPubMed
Vahed, M.M. (2014). The effect of escalating dose, multiple binge methamphetamine regimen and alcohol combination on spatial memory and oxidative stress markers in rat brain. Journal of Alcoholism & Drug Dependence, 02(03), 159. doi: 10.4172/2329-6488.1000159CrossRefGoogle Scholar
Walter, E.J. & Carraretto, M. (2016). The neurological and cognitive consequences of hyperthermia. Critical Care, 20(1), 199. doi: 10.1186/s13054-016-1376-4CrossRefGoogle ScholarPubMed
Wang, L., Min, J.E., Krebs, E., Evans, E., Huang, D., Liu, L., Hser, Yl., &Nosyk, B. (2017). Polydrug use and its association with drug treatment outcomes among primary heroin, methamphetamine, and cocaine users. International Journal of Drug Policy, 49, 3240. doi: 10.1016/j.drugpo.2017.07.009CrossRefGoogle ScholarPubMed
Wilkinson, G. & Robertson, G. (2006). Wide Range Achievement Test-4 (WRAT-4). Lutz, FL: Psychological Assessment Resources Inc.Google Scholar
Wilson, L., Taylor, J.D., Nash, C.W., & Cameron, D.F. (1966). The combined effects of ethanol and amphetamine sulfate on performance of human subjects. Canadian Medical Association Journal, 94(10), 478484.Google ScholarPubMed
Woicik, P.A., Moeller, S.J., Alia-Klein, N., Maloney, T., Lukasik, T.M., Yeliosof, O., Wang, G.J., Volkow, N.D., & Goldstein, R.Z. (2009). The neuropsychology of cocaine addiction: Recent cocaine use masks impairment. Neuropsychopharmacology, 34(5), 11121122. doi: 10.1038/npp.2008.60CrossRefGoogle ScholarPubMed
Wood, S., Sage, J.R., Shuman, T., & Anagnostaras, S.G. (2014). Psychostimulants and cognition: A continuum of behavioral and cognitive activation. Pharmacological Reviews, 66(1), 193221. doi: 10.1124/pr.112.007054CrossRefGoogle ScholarPubMed
Yamamura, T., Hishida, S., Hatake, K., Taniguchi, T., & Ouchi, H. (1992). Effects of methamphetamine and ethanol on learning and brain neurotransmitters in rats. Pharmacology Biochemistry and Behavior, 42(3), 389400.CrossRefGoogle ScholarPubMed
Yen, D.J., Wang, S.J., Ju, T.H., Chen, C.C., Liao, K.K., Fuh, J.L., & Hu, H.H. (1994). Stroke associated with methamphetamine inhalation. European Neurology, 34(1), 1622.CrossRefGoogle ScholarPubMed
Yu, S., Zhu, L., Shen, Q., Bai, X., & Di, X. (2015). Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behavioural Neurology, 2015, 103969. doi: 10.1155/2015/103969CrossRefGoogle ScholarPubMed
Supplementary material: File

Saloner et al. supplementary material

Tables S1-S2

Download Saloner et al. supplementary material(File)
File 18 KB
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Conditional Effects of Lifetime Alcohol Consumption on Methamphetamine-Associated Neurocognitive Performance
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Conditional Effects of Lifetime Alcohol Consumption on Methamphetamine-Associated Neurocognitive Performance
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Conditional Effects of Lifetime Alcohol Consumption on Methamphetamine-Associated Neurocognitive Performance
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *