Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T05:05:34.386Z Has data issue: false hasContentIssue false

Chronic Effects of Blast-Related TBI on Subcortical Functional Connectivity in Veterans

Published online by Cambridge University Press:  06 June 2016

Mary R. Newsome*
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Andrew R. Mayer
Affiliation:
The Mind Research Network, Albuquerque, New Mexico Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
Xiaodi Lin
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Maya Troyanskaya
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
George R. Jackson
Affiliation:
Parkinson’s Disease Research, Education and Clinical Center, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Neurology, Baylor College of Medicine, Houston, Texas
Randall S. Scheibel
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Annette Walder
Affiliation:
Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
Ajithraj Sathiyaraj
Affiliation:
The Dartmouth Institute for Health Policy Clinical Practice, Lebanon, New Hampshire
Elisabeth A. Wilde
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas Department of Neurology, Baylor College of Medicine, Houston, Texas Department of Radiology, Baylor College of Medicine, Houston, Texas
Shalini Mukhi
Affiliation:
Department of Radiology, Baylor College of Medicine, Houston, Texas Diagnostic and Therapeutic Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
Brian A. Taylor
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas Department of Radiology, Baylor College of Medicine, Houston, Texas Diagnostic and Therapeutic Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
Harvey S. Levin
Affiliation:
Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
*
Correspondence and reprint requests to: Mary R. Newsome, Michael E. DeBakey VA Medical Center, Department of Physical Medicine & Rehabilitation, Baylor College of Medicine BCM 637, Houston, TX 77030. E-mail: mnewsome@bcm.edu

Abstract

Objectives: Blast explosions are the most frequent mechanism of traumatic brain injury (TBI) in recent wars, but little is known about their long-term effects. Methods: Functional connectivity (FC) was measured in 17 veterans an average of 5.46 years after their most serious blast related TBI, and in 15 demographically similar veterans without TBI or blast exposure. Subcortical FC was measured in bilateral caudate, putamen, and globus pallidus. The default mode and fronto-parietal networks were also investigated. Results: In subcortical regions, between-groups t tests revealed altered FC from the right putamen and right globus pallidus. However, following analysis of covariance (ANCOVA) with age, depression (Center for Epidemiologic Studies Depression Scale), and posttraumatic stress disorder symptom (PTSD Checklist – Civilian version) measures, significant findings remained only for the right globus pallidus with anticorrelation in bilateral temporal occipital fusiform cortex, occipital fusiform gyrus, lingual gyrus, and cerebellum, as well as the right occipital pole. No group differences were found for the default mode network. Although reduced FC was found in the fronto-parietal network in the TBI group, between-group differences were nonsignificant after the ANCOVA. Conclusions: FC of the globus pallidus is altered years after exposure to blast related TBI. Future studies are necessary to explore the trajectory of changes in FC in subcortical regions after blast TBI, the effects of isolated versus repetitive blast-related TBI, and the relation to long-term outcomes in veterans. (JINS, 2016, 22, 631–642)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, R.M., Irish, M., Henning, E., Dermody, N., Bartley, L., Kiernan, M.C., & Hodges, J.R. (2016). Assessment of eating behavior disturbance and associated neural networks in frontotemporal dementia. JAMA Neurology, 73, 282290. doi:10.1001/jamaneurol.2015.4478 CrossRefGoogle ScholarPubMed
Akbar, N., Till, C., Sled, J.G., Binns, M.A., Doesburg, S.M., Aubert-Broche, B., & Banwell, B. (2015). Altered resting-state functional connectivity in cognitively preserved pediatric-onset MS patients and relationship to structural damage and cognitive performance. Multiple Sclerosis, doi:10.1177/1352458515602336 Google ScholarPubMed
Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review]. Annual Review of Neuroscience, 9, 357381. doi:10.1146/annurev.ne.09.030186.002041 CrossRefGoogle ScholarPubMed
Arnold Anteraper, S., Triantafyllou, C., Sawyer, A.T., Hofmann, S.G., Gabrieli, J.D., & Whitfield-Gabrieli, S. (2014). Hyper-connectivity of subcortical resting-state networks in social anxiety disorder. [Research Support, Non-U.S. Gov’t]. Brain Connect, 4(2), 8190. doi:10.1089/brain.2013.0180 CrossRefGoogle ScholarPubMed
Ashby, F.G. (2011). Processing statistical analysis of MRI data. Cambridge: Cambridge University Press.Google Scholar
Babor, T.F., Higgins-Biddle, J.C., Saunders, J.B., & Monteiro, M.G. (2001). The alcohol use disorders identification test: Guidelines for use in primary care (2nd ed.). Geneva: WHO.Google Scholar
Barona, A., Reynolds, C.R., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52, 885887.CrossRefGoogle Scholar
Belanger, H.G., Uomoto, J.M., & Vanderploeg, R.D. (2009). The Veterans Health Administration's (VHA’s) Polytrauma System of Care for mild traumatic brain injury: Costs, benefits, and controversies. [Research Support, U.S. Gov’t, Non-P.H.S. Review]. The Journal of Head Trauma Rehabilitation, 24(1), 413. doi:10.1097/HTR.0b013e3181957032 CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. [Research Support, U.S. Gov’t, P.H.S.]. Magnetic Resonance in Medicine, 34(4), 537541.CrossRefGoogle ScholarPubMed
Bower, J.H., Maraganore, D.M., Peterson, B.J., McDonnell, S.K., Ahlskog, J.E., & Rocca, W.A. (2003). Head trauma preceding PD: A case-control study. [Research Support, U.S. Gov’t, P.H.S. Review]. Neurology, 60(10), 16101615.CrossRefGoogle ScholarPubMed
Brenner, L.A., Vanderploeg, R.D., & Terrio, H. (2009). Assessment and diagnosis of mild traumatic brain injury, posttraumatic stress disorder, and other polytrauma conditions: Burden of adversity hypothesis. [Review]. Rehabilitation Psychology, 54(3), 239246. doi:10.1037/a0016908 CrossRefGoogle ScholarPubMed
Brown, L., Sherbenou, R.J., & Johnsen, S.K. (2010). Test of nonverbal intelligence— (4th Ed.). Austin, TX: Pro-Ed.Google Scholar
Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., && Munafo, M.R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. [Research Support, Non-U.S. Gov’t]. Nature Reviews. Neuroscience, 14(5), 365376. doi:10.1038/nrn3475 CrossRefGoogle ScholarPubMed
Cicerone, K.D., & Kalmar, K. (1995). Persistent postconcussion syndrome: The structure of subjective complaints after mTBI. The Journal of Head Trauma Rehabilitation, 10, 117.CrossRefGoogle Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.Google Scholar
Cole, M.W., Reynolds, J.R., Power, J.D., Repovs, G., Anticevic, A., & Braver, T.S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 16(9), 13481355. doi:10.1038/nn.3470 CrossRefGoogle ScholarPubMed
Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. [Research Support, Non-U.S. Gov’t Review]. Neuroscience and Biobehavioral Reviews, 30(1), 123. doi:10.1016/j.neubiorev.2005.03.024 CrossRefGoogle ScholarPubMed
Crozier, J. C., Wang, L., Huettel, S.A., & De Bellis, M.D. (2014). Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter? [Research Support, N.I.H., Extramural]. Dev Psychopathol, 26(2), 491513. doi: 10.1017/S095457941400008X CrossRefGoogle ScholarPubMed
Davenport, N.D., Lim, K.O., Armstrong, M.T., & Sponheim, S.R. (2012). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroimage, 59(3), 20172024. doi:10.1016/j.neuroimage.2011.10.050 CrossRefGoogle ScholarPubMed
de Rover, M., Petersson, K.M., van der Werf, S.P., Cools, A.R., Berger, H.J., & Fernandez, G. (2008). Neural correlates of strategic memory retrieval: Differentiating between spatial-associative and temporal-associative strategies. [Comparative Study]. Human Brain Mapping, 29(9), 10681079. doi:10.1002/hbm.20445 CrossRefGoogle ScholarPubMed
Derogatis, L.R. (1993). BSI Brief Symptom Inventory: Administration, Scoring, and Procedure Manual (4th ed.). Minneapolis, MN: National Computer Systems.Google Scholar
Eid, L., & Parent, M. (2015). Morphological evidence for dopamine interactions with pallidal neurons in primates. Frontiers in Neuroanatomy, 9, 111. doi:10.3389/fnana.2015.00111 Google ScholarPubMed
Fischer, B.L., Parsons, M., Durgerian, S., Reece, C., Mourany, L., Lowe, M.J., & Rao, S.M. (2014). Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. Journal of Neurotrauma, 31(2), 169179. doi:10.1089/neu.2013.2877 CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. Proc Natl Acad Sci U S A, 102(27), 96739678. doi: 10.1073/pnas.0504136102 CrossRefGoogle ScholarPubMed
Friston, K. (2013). Sample size and the fallacies of classical inference. [Comment Research Support, Non-U.S. Gov’t]. Neuroimage, 81, 503504. doi:10.1016/j.neuroimage.2013.02.057 CrossRefGoogle ScholarPubMed
Gauthier, J., Parent, M., Levesque, M., & Parent, A. (1999). The axonal arborization of single nigrostriatal neurons in rats. [Research Support, Non-U.S. Gov’t]. Brain Research, 834(1–2), 228232.CrossRefGoogle ScholarPubMed
Green, P., Gervais, R., & Allen, L.M. (2001). Word Memory Test in normal controls and clinical cases simulating impairment. Archives of Clinical Neuropsychology, 16(8), 849850.Google Scholar
Greicius, M.D., Supekar, K., Menon, V., & Dougherty, R.F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Cerebral Cortex, 19(1), 7278. doi:10.1093/cercor/bhn059 CrossRefGoogle ScholarPubMed
Gusnard, D.A., & Raichle, M.E. (2001). Searching for a baseline: Functional imaging and the resting human brain. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Nature Reviews. Neuroscience, 2(10), 685694. doi:10.1038/35094500 CrossRefGoogle ScholarPubMed
Han, K., Mac Donald, C.L., Johnson, A.M., Barnes, Y., Wierzechowski, L., Zonies, D., & Brody, D.L. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive ‘mild’ blast-related traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroimage, 84, 7696. doi:10.1016/j.neuroimage.2013.08.017 CrossRefGoogle ScholarPubMed
Helmich, R.C., Janssen, M.J., Oyen, W.J., Bloem, B.R., & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. [Research Support, Non-U.S. Gov’t]. Annals of Neurology, 69(2), 269281. doi:10.1002/ana.22361 CrossRefGoogle ScholarPubMed
Helmick, K.M., Spells, C.A., Malik, S.Z., Davies, C.A., Marion, D.W., & Hinds, S.R. (2015). Traumatic brain injury in the US military: Epidemiology and key clinical and research programs. Brain Imaging and Behavior, 9, 358366. doi:10.1007/s11682-015-9399-z CrossRefGoogle ScholarPubMed
Hosseini, S.M., & Kesler, S.R. (2013). Comparing connectivity pattern and small-world organization between structural correlation and resting-state networks in healthy adults. [Comparative Study Research Support, N.I.H., Extramural]. Neuroimage, 78, 402414. doi:10.1016/j.neuroimage.2013.04.032 CrossRefGoogle ScholarPubMed
Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., && Magnotta, V.A. (2012). White matter abnormalities in veterans with mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The American Journal of Psychiatry, 169(12), 12841291. doi:10.1176/appi.ajp.2012.12050600 CrossRefGoogle ScholarPubMed
Kang, X., Herron, T.J., Ettlinger, M., & Woods, D.L. (2015). Hemispheric asymmetries in cortical and subcortical anatomy. Laterality, 20(6), 658684. doi:10.1080/1357650X.2015.1032975 CrossRefGoogle ScholarPubMed
Keane, T.M., Fairbank, J.A., Caddell, J.M., Zimering, R.T., Taylor, K.L., & Mora, C.A. (1989). Clinical evaluation of a measure to assess combat exposure. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 1(1), 5355.CrossRefGoogle Scholar
Kwon, H.G., & Jang, S.H. (2014). Differences in neural connectivity between the substantia nigra and ventral tegmental area in the human brain. Frontiers in Human Neuroscience, 8, 41. doi:10.3389/fnhum.2014.00041 CrossRefGoogle ScholarPubMed
Levin, H.S., Wilde, E., Troyanskaya, M., Petersen, N.J., Scheibel, R., Newsome, M., & Li, X. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 27(4), 683694. doi:10.1089/neu.2009.1073 CrossRefGoogle ScholarPubMed
Lindquist, M.A., Caffo, B., & Crainiceanu, C. (2013). Ironing out the statistical wrinkles in "ten ironic rules". [Comment]. Neuroimage, 81, 499502. doi:10.1016/j.neuroimage.2013.02.056 CrossRefGoogle ScholarPubMed
MacGregor, A.J., Dougherty, A.L., & Galarneau, M.R. (2011). Injury-specific correlates of combat-related traumatic brain injury in Operation Iraqi Freedom. [Comparative Study Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 26(4), 312318. doi:10.1097/HTR.0b013e3181e94404 CrossRefGoogle ScholarPubMed
Maldjian, J.A., Laurienti, P.J., Kraft, R.A., & Burdette, J.H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 12331239.CrossRefGoogle ScholarPubMed
Marras, C., Hincapie, C.A., Kristman, V.L., Cancelliere, C., Soklaridis, S., Li, A., & Cassidy, J.D. (2014). Systematic review of the risk of Parkinson’s disease after mild traumatic brain injury: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. [Research Support, Non-U.S. Gov’t Review]. Archives of Physical Medicine and Rehabilitation, 95(3 Suppl.), S238S244. doi:10.1016/j.apmr.2013.08.298 CrossRefGoogle ScholarPubMed
Mayer, A.R., Mannell, M.V., Ling, J., Gasparovic, C., & Yeo, R.A. (2011). Functional connectivity in mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 32(11), 18251835. doi:10.1002/hbm.21151 CrossRefGoogle ScholarPubMed
Middleton, F.A., & Strick, P.L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. [Review]. Brain and Cognition, 42(2), 183200. doi:10.1006/brcg.1999.1099 CrossRefGoogle ScholarPubMed
Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. [Research Support, U.S. Gov’t, P.H.S.]CrossRefGoogle Scholar
Morey, R.A., Dolcos, F., Petty, C.M., Cooper, D.A., Hayes, J.P., LaBar, K.S., & McCarthy, G. (2009). The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Psychiatric Research, 43(8), 809817. doi:10.1016/j.jpsychires.2008.10.014 CrossRefGoogle ScholarPubMed
Nathan, D.E., Oakes, T.R., Yeh, P.H., French, L.M., Harper, J.F., Liu, W., & Riedy, G. (2015). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connectivity, 5(2), 102114. doi:10.1089/brain.2014.0273 CrossRefGoogle ScholarPubMed
Newsome, M.R., Durgerian, S., Mourany, L., Scheibel, R.S., Lowe, M.J., Beall, E.B., & Rao, S.M. (2015). Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. Neuroimage: Clinical, 8, 543553. doi:10.1016/j.nicl.2015.04.024 CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Pelletier-Baldelli, A., Bernard, J.A., & Mittal, V.A. (2015). Intrinsic functional connectivity in salience and default mode networks and aberrant social processes in youth at ultra-high risk for psychosis. [Research Support, N.I.H., Extramural]. PLoS One, 10(8), e0134936. doi:10.1371/journal.pone.0134936 CrossRefGoogle ScholarPubMed
Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroimage, 59(3), 21422154. doi:10.1016/j.neuroimage.2011.10.018 CrossRefGoogle ScholarPubMed
Radloff, L.S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Rao, J.A., Jenkins, L.M., Hymen, E., Feigon, M., Weisenbach, S.L., Zubieta, J.K., && Langenecker, S.A. (2016). Differential resting state connectivity patterns and impaired semantically cued list learning test performance in early course remitted major depressive disorder. Journal of the International Neuropsychological Society, 22(2), 225239. doi:10.1017/S1355617716000011 CrossRefGoogle ScholarPubMed
Readnower, R.D., Chavko, M., Adeeb, S., Conroy, M.D., Pauly, J.R., McCarron, R.M., && Sullivan, P.G. (2010). Increase in blood-brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Neuroscience Research, 88(16), 35303539. doi:10.1002/jnr.22510 CrossRefGoogle Scholar
Robinson, M.E., Lindemer, E.R., Fonda, J.R., Milberg, W.P., McGlinchey, R.E., & Salat, D.H. (2015). Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. [Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 36(3), 911922. doi:10.1002/hbm.22675 CrossRefGoogle ScholarPubMed
Sajja, V.S., Galloway, M., Ghoddoussi, F., Kepsel, A., & VandeVord, P. (2013). Effects of blast-induced neurotrauma on the nucleus accumbens. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Neuroscience Research, 91(4), 593601. doi:10.1002/jnr.23179 CrossRefGoogle ScholarPubMed
Sakamoto, H., Fukuda, R., Okuaki, T., Rogers, M., Kasai, K., Machida, T., & Kato, N. (2005). Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: A functional MRI study. [Clinical Trial Research Support, Non-U.S. Gov’t]. Neuroimage, 26(3), 813821. doi:10.1016/j.neuroimage.2005.02.032 CrossRefGoogle ScholarPubMed
Scheibel, R.S., Newsome, M.R., Troyanskaya, M., Lin, X., Steinberg, J.L., Radaideh, M., & Levin, H.S. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of the International Neuropsychological Society, 18(1), 89100. doi:10.1017/S1355617711001433 CrossRefGoogle ScholarPubMed
Scheibel, R.S., Pastorek, N.J., Troyanskaya, M., Kennedy, J.E., Steinberg, J.L., Newsome, M.R., & Levin, H.S. (2015). The suppression of brain activation in post-deployment military personnel with posttraumatic stress symptoms. Brain Imaging and Behavior, 9(3), 513526. doi:10.1007/s11682-015-9376-6 CrossRefGoogle ScholarPubMed
Shahaduzzaman, M., Acosta, S., Bickford, P.C., & Borlongan, C.V. (2013). alpha-Synuclein is a pathological link and therapeutic target for Parkinson's disease and traumatic brain injury. Medical Hypotheses, 81(4), 675680. doi:10.1016/j.mehy.2013.07.025 CrossRefGoogle ScholarPubMed
Skinner, H.A. (1982). The Drug Abuse Screening Test. Addictive Behavior, 7(4), 363371.CrossRefGoogle ScholarPubMed
Smith, S.M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A, 106(31), 1304013045. doi: 10.1073/pnas.0905267106 CrossRefGoogle ScholarPubMed
Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R.P. (2013). Default mode network interference in mild traumatic brain injury - A pilot resting state study. [Research Support, U.S. Gov’t, Non-P.H.S.]. Brain Research, 1537, 201215. doi:10.1016/j.brainres.2013.08.034 CrossRefGoogle ScholarPubMed
Spielberg, J.M., McGlinchey, R.E., Milberg, W.P., & Salat, D.H. (2015). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biological Psychiatry, 78(3), 210216. doi:10.1016/j.biopsych.2015.02.013 CrossRefGoogle ScholarPubMed
Sponheim, S.R., McGuire, K.A., Kang, S.S., Davenport, N.D., Aviyente, S., Bernat, E.M., && Lim, K.O. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroimage, 54(Suppl. 1), S21S29. doi:10.1016/j.neuroimage.2010.09.007 CrossRefGoogle ScholarPubMed
Stevens, M.C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S.T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 6(2), 293318. doi:10.1007/s11682-012-9157-4 CrossRefGoogle ScholarPubMed
Taylor, P.A., & Ford, C.C. (2009). Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Biomechanical Engineering, 131(6), 061007. doi:10.1115/1.3118765 CrossRefGoogle ScholarPubMed
Tumer, N., Svetlov, S., Whidden, M., Kirichenko, N., Prima, V., Erdos, B., & Wang, K.K. (2013). Overpressure blast-wave induced brain injury elevates oxidative stress in the hypothalamus and catecholamine biosynthesis in the rat adrenal medulla. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroscience Letters, 544, 6267. doi:10.1016/j.neulet.2013.03.042 CrossRefGoogle ScholarPubMed
Vakhtin, A.A., Calhoun, V.D., Jung, R.E., Prestopnik, J.L., Taylor, P.A., & Ford, C.C. (2013). Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. Brain Injury, 27(11), 13041310. doi:10.3109/02699052.2013.823561 CrossRefGoogle ScholarPubMed
Weathers, F.W., Litz, B.T., Herman, D.S., Huska, J.A., & Keane, T.M. (1993). The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the 9th Annual Conference of the ISTSS. San Antonio, TX.Google Scholar
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. [Research Support, Non-U.S. Gov’t]. Brain Connectivity, 2(3), 125141. doi:10.1089/brain.2012.0073 CrossRefGoogle Scholar
Woods, A.S., Colsch, B., Jackson, S.N., Post, J., Baldwin, K., Roux, A., & Balaban, C. (2013). Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. ACS Chemical Neuroscience, 4(4), 594600. doi:10.1021/cn300216h CrossRefGoogle Scholar
Yeh, P.H., Wang, B., Oakes, T.R., French, L.M., Pan, H., Graner, J., & Riedy, G. (2014). Postconcussional disorder and PTSD symptoms of military-related traumatic brain injury associated with compromised neurocircuitry. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 35(6), 26522673. doi:10.1002/hbm.22358 CrossRefGoogle ScholarPubMed
Yeterian, E.H., & Van Hoesen, G.W. (1978). Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections. [Research Support, U.S. Gov’t, P.H.S.]. Brain Research, 139(1), 4363.CrossRefGoogle ScholarPubMed
Supplementary material: File

Newsome supplementary material

Appendix

Download Newsome supplementary material(File)
File 48.6 KB