Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T07:34:25.430Z Has data issue: false hasContentIssue false

ORDERS OF GROWTH AND GENERALIZED ENTROPY

Published online by Cambridge University Press:  28 September 2021

Javier Correa*
Affiliation:
Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 – Pampulha, Belo Horizonte – MG, 31270-901 BRAZIL
Enrique R. Pujals
Affiliation:
The Graduate Center – CUNY, 365 Fifth Avenue, New York, NY 10016 USA (epujals@gc.cuny.edu)

Abstract

We construct the complete set of orders of growth and define on it the generalized entropy of a dynamical system. With this object, we provide a framework wherein we can study the separation of orbits of a map beyond the scope of exponential growth. We show that this construction is particularly useful for studying families of dynamical systems with vanishing entropy. Moreover, we see that the space of orders of growth in which orbits are separated is wilder than expected. We achieve this with different types of examples.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R., Konheim, A. and McAndrew, M., Topological entropy, Trans. Amer. Math. Soc. 114(2) (1965), 309319.CrossRefGoogle Scholar
Anosov, D. and Katok, A., New examples of ergodic diffeomorphisms of smooth manifolds, Uspekhi Mat. Nauk 25 (1970), 173174.Google Scholar
Artigue, A., Carrasco-Olivera, D. and Monteverde, I., Polynomial entropy and expansivity, Acta Math. Hungar. 152(1) (2017), 152–140.CrossRefGoogle Scholar
Bernard, P. and Labrousse, C., An entropic characterization of the flat metrics on the two torus, Geom. Dedicata 180(1) (2016), 187201.CrossRefGoogle Scholar
Blanchard, F., Host, B. and Mass, A., Topological complexity, Ergodic Theory Dynam. Systems 20(3) (2000), 641662.CrossRefGoogle Scholar
Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153(1971), 401414.CrossRefGoogle Scholar
Bowen, R., Entropy and the fundamental group, in The Sructure of Attractors in Dynamical Systems, Lecture Notes in Mathematics, 668, pp. 2129 (Springer, Berlin, 1978).CrossRefGoogle Scholar
Cantat, R. and Paris-Romaskevich, O., Automorphisms of compact Kähler manifolds with slow dynamics, Trans. Amer. Math. Soc. 374 (2021), 13511389.CrossRefGoogle Scholar
Chevallier, N. and Conze, J.-P., Examples of recurrent or transient stationary walks in ${\mathbb{R}}^d$ over a rotation of $\mathbb{T}^2$ , Contemp. Math. 485 (2009), 7184.CrossRefGoogle Scholar
Conze, J.-P., Ergodicité d’une transformation cylindrique, Bull. Soc. Math. France 108 (1980), 441456.10.24033/bsmf.1928CrossRefGoogle Scholar
Conze, J.-P., Recurrence, ergodicity and invariant measures for cocycles over a rotation, Contemp. Math. 485 (2009), 4570.CrossRefGoogle Scholar
Crovisier, S., Pujals, E. and Tresser, C., ‘Mildly dissipative diffeomorphisms of the disk with zero entropy’, Preprint, 2020, arXiv:2005.14278.Google Scholar
de Paula, H., Generalized entropy of wandering dynamics, PhD thesis, 2021, http://hdl.handle.net/1843/36252.Google Scholar
Dinaburg, E., A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk 190(1) (1971), 1922.Google Scholar
Egashira, S., Expansion growth of foliations, Ann. Fac. Sci. Toulouse Math. (6) 2(6) (1993), 1552.CrossRefGoogle Scholar
Fathi, A. and Herman, M., Existence de difféomorphismes minimaux, Astérisque 49 (1977), 3759.Google Scholar
Fayad, B., Weak mixing for reparameterized linear flows on the torus, Ergodic Theory Dynam. Systems 22(1) (2002), 187201.CrossRefGoogle Scholar
Gottschalk, W. and Hedlund, G., Topological Dynamics (American Mathematical Society Colloquium Publications, Providence, R. I., USA, Vol. 36, 1955).Google Scholar
Hauseux, L. and Le Roux, F., Entropie polynomiale des homéomorphismes de Brouwer, Ann. H. Lebesgue 2 (2019), 3957.CrossRefGoogle Scholar
Ivanov, N. V., Entropy and Nielsen numbers, Dokl. Akad. Nauk 265(2) (1982), 284287.Google Scholar
Kirby, R. and Siebenmann, L., On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. (N.S.) 75(4) (1969), 742749.CrossRefGoogle Scholar
Krygin, A., Examples of ergodic cylindrical cascades, Mat. Zametki 16(6) (1974), 981991.Google Scholar
Labrousse, C., ‘Polynomial entropy for the circle homeomorphisms and for ${C}^1$ nonvanishing vector fields on ${T}^2$ , Preprint, 2013, arXiv:1311.0213.Google Scholar
Liao, G., Viana, M. and Yang, J., The entropy conjecture for diffeomorphisms away from tangencies. J. Eur. Math. Soc. (JEMS) 15(6) (2013), 20432060.CrossRefGoogle Scholar
Mañé, R., Ergodic Theory and Differentiable Dynamics (Springer-Verlag, Berlin/Heidelberg, Germany, 1987).CrossRefGoogle Scholar
Manning, A., Topological entropy and the first homology group, in Dynamical Systems—Warwick 1974, Lecture Notes in Mathematics, 468, pp. 185190 (Springer-Verlag, Berlin/Heidelberg, Germany, 1975).CrossRefGoogle Scholar
Marco, J.-P., Polynomial entropies and integrable Hamiltonian systems, Regul. Chaotic Dyn. 18(6) (2013), 623655.CrossRefGoogle Scholar
Marzantowicz, W. and Przytycki, F., Estimates of the topological entropy from below for continuous self-maps on some compact manifolds, Discrete Contin. Dyn. Syst. 21(2) (2008), 501512.CrossRefGoogle Scholar
Misiurewicz, M. and Przytycki, F., Entropy conjecture for tori, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 25(6) (1977), 575578.Google Scholar
Misiurewicz, M. and Przytycki, F., Topological entropy and degree of smooth mappings, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 25(6) (1977), 573574.Google Scholar
Oliveira, K. and Viana, M., Thermodynamical formalism for robust classes of potentials and non-uniformly hyperbolic maps, Ergodic Theory Dynam. Systems 28(2) (2008), 501533.CrossRefGoogle Scholar
Palis, J., Pugh, C., Shub, M. and Sullivan, D., Genericity theorems in topological dynamics, in Dynamical Systems—Warwick 1974, Lecture Notes in Mathematics, 468, pp. 241250 (Springer-Verlag, Berlin/Heidelberg, Germany, 1975).CrossRefGoogle Scholar
Ruelle, D. and Sullivan, D., Currents, flows and diffeomorphisms, Topology 14(4) (1975), 319327.CrossRefGoogle Scholar
Saghin, R. and Xia, Z., The entropy conjecture for partially hyperbolic diffeomorphisms with 1-D center, Topology Appl. 157(1) (2010), 2934.CrossRefGoogle Scholar
Shub, M., Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc. (N.S.) 80(1) (1974), 2741.CrossRefGoogle Scholar
Shub, M. and Williams, R., Entropy and stability, Topology 14(4) (1975), 329338.CrossRefGoogle Scholar
Sidorov, E. A., Topological transitivity of cylindrical cascades, Mat. Zametki 14(3) (1973), 441452.Google Scholar
Viana, M. and Oliveira, K., Foundations of Ergodic Theory (Cambridge University Press, Cambridge, United Kingdom, 2016).Google Scholar
Walczak, P. G., Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms, Discrete Contin. Dyn. Syst. 33(10) (2013), 47314742.CrossRefGoogle Scholar
Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79 (Springer-Verlag, New York, 1982).Google Scholar
Yoccoz, J.-C., Sur la disparition de propriétés de type Denjoy-Koksma en dimension 2, C. R. Acad. Sci. Paris 291(13) (1980), 655658.Google Scholar
Yoccoz, J.-C., Petits diviseurs en dimension 1, Astérisque 231 (1995), 256.Google Scholar
Yomdin, Y., Volume growth and entropy, Israel J. Math. 57(3) (1987), 285300.CrossRefGoogle Scholar