Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-z5d2w Total loading time: 0.374 Render date: 2021-12-09T12:08:56.966Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Twisted geometric Satake equivalence

Published online by Cambridge University Press:  24 March 2010

Michael Finkelberg
Affiliation:
Independent Moscow University, Institute for Information Transmission Problems and State University Higher School of Economy, Department of Mathematics, 20 Myasnitskaya Street, Moscow 101000, Russia (fnklberg@gmail.com)
Sergey Lysenko
Affiliation:
Institut Élie Cartan Nancy (Mathématiques), Université Henri Poincaré Nancy 1, BP 70239, 54506 Vandoeuvre-lés-Nancy Cedex, France (sergey.lysenko@iecn.u-nancy.fr)

Abstract

Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → mEG(F) → 1; any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN(K) → (under some assumption on the characteristic of k). Consider the category of G(O)-bi-invariant perverse sheaves on E with m-monodromy ζ. We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group ǦE,N. We compute the root datum of ǦE,N.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beilinson, A. and Drinfeld, V., Quantization of Hitchin's Hamiltonians and Hecke eigen-sheaves, preprint (available at www.math.uchicago.edu/~mitya/langlands.html).Google Scholar
2.Bourbaki, N., Groupes et algèbres de Lie, Chapter 6 (Hermann, Paris, 1968).Google Scholar
3.Brylinski, J.-L. and Deligne, P., Central extensions of reductive groups by K 2, Publ. Math. IHES 94 (2001), 585.CrossRefGoogle Scholar
4.Deligne, P. and Milne, J., Tannakian categories, in Hodge cycles, motives and Shimura varieties, Lecture Notes in Mathematics, Volume 900, pp. 101228 (Springer, 1982).Google Scholar
5.Faltings, G., Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5 (2003), 4168.CrossRefGoogle Scholar
6.Gaitsgory, D., Twisted Whittaker model and factorizable sheaves, Selecta Math. 13 (2008), 617659.CrossRefGoogle Scholar
7.Kapustin, A. and Witten, E., Electric–magnetic duality and the geometric Langlands program, Commun. Num. Theory Phys. 1 (2007), 1236.CrossRefGoogle Scholar
8.Lusztig, G., Monodromic systems on affine flag manifolds, Proc. R. Soc. Lond. A 445 (1994), 231246 (erratum: Proc. R. Soc. Lond. A 450 (1995), 731).CrossRefGoogle Scholar
9.Lysenko, S., Moduli of metaplectic bundles on curves and theta-sheaves, Annales Scient. Éc. Norm. Sup. 39 (2006), 415466.CrossRefGoogle Scholar
10.Mirković, I. and Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Annals Math. (2) 166 (2007), 95143.CrossRefGoogle Scholar
11.Savin, G., Local Shimura correspondence, Math. Annalen 280 (1988), 185190.CrossRefGoogle Scholar
13
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Twisted geometric Satake equivalence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Twisted geometric Satake equivalence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Twisted geometric Satake equivalence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *