Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-tmjz7 Total loading time: 0.24 Render date: 2021-05-11T08:52:10.500Z Has data issue: true Feature Flags: {}

EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE

Published online by Cambridge University Press:  14 May 2020

Christopher Birkbeck
Affiliation:
Department of Mathematics, University College London, Gower street,WC1E 6BT (c.birkbeck@ucl.ac.uk)
Tony Feng
Affiliation:
MIT Department of Mathematics, 182 Memorial Dr., Cambridge, MA 02142 (fengt@mit.edu)
David Hansen
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany (dhansen@mpim-bonn.mpg.de)
Serin Hong
Affiliation:
Department of Mathematics, University of Michigan, 530 Church Street,Ann Arbor, MI 48109, USA (serinh@umich.edu)
Qirui Li
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, 10 NY 10027, USA (qiruili@math.columbia.edu)
Anthony Wang
Affiliation:
Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA (anthonyw@math.uchicago.edu)
Lynnelle Ye
Affiliation:
Department of Mathematics, Building 380, Stanford, California 94305 (lynnelle@stanford.edu)

Abstract

We completely classify the possible extensions between semistable vector bundles on the Fargues–Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder–Narasimhan (HN) polygons. Our arguments rely on a careful study of various moduli spaces of bundle maps, which we define and analyze using Scholze’s language of diamonds. This analysis reduces our main results to a somewhat involved combinatorial problem, which we then solve via a reinterpretation in terms of the Euclidean geometry of HN polygons.

MSC classification

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

DH is grateful to Christian Johansson for some useful conversations about the material in § 3.2, and Peter Scholze for providing early access to the manuscript [13] and for some helpful conversations about the results therein. The project group students (CB, TF, SH, QL, AW, and LY) thank DH and Kiran Kedlaya for suggesting the problem. TF gratefully acknowledges the support of an NSF Graduate Fellowship. LY gratefully acknowledges the support of the National Defense Science and Engineering Graduate Fellowship. We would also like to thank David Linus Hamann and the referee for their valuable feedback on the first version of this paper.

References

Caraiani, A. and Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of Math. (2).Google Scholar
Colmez, P., Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1(3) (2002), 331439. MR 1956055.CrossRefGoogle Scholar
Fargues, L., Simple connexité des fibres d’une application d’Abel-Jacobi et corps de classe local, Preprint, https://webusers.imj-prg.fr/∼laurent.fargues/cdc.pdf. To appear in Annales scientifiques de l’École normale supérieure.Google Scholar
Fargues, L. and Fontaine, J.-M., Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque (406) (2018), xiii+382. ISSN 0303-1179.Google Scholar
Fargues, L. and Fontaine, J.-M., Vector bundles on curves and p-adic Hodge theory, in Automorphic forms and Galois representations. vol. 2, London Mathematical Society Lecture Note Series, Volumne 415, pp. 17104 (Cambridge University Press, Cambridge, 2014). MR 3444231.CrossRefGoogle Scholar
Hansen, D., Degenerating vector bundles in $p$-adic Hodge theory, Preprint, http://www.math.columbia.edu/∼hansen/degen.pdf.Google Scholar
Huber, R., étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996). MR 1734903.CrossRefGoogle Scholar
Kedlaya, K., Sheaves, stacks, and shtukas, Preprint, http://swc.math.arizona.edu/aws/2017/2017KedlayaNotes.pdf.Google Scholar
Kedlaya, K. S., Slope filtrations for relative Frobenius, Astérisque I(319) (2008), 259301. Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$-modules. MR 2493220.Google Scholar
Kedlaya, K. S., Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not. IMRN 2016(8) (2016), 25442567. MR 3519123.CrossRefGoogle Scholar
Kedlaya, K. S. and Liu, R., Relative p-adic Hodge theory: foundations, Astérisque (371) (2015), 239. MR 3379653.Google Scholar
Le Bras, A.-C., Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167(18) (2018), 34553532.CrossRefGoogle Scholar
Scholze, P., Étale cohomology of diamonds, Preprint, http://www.math.uni-bonn.de/people/scholze/EtCohDiamonds.pdf.Google Scholar
The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, (2018).Google Scholar
Scholze, P. and Weinstein, J., Lectures on p-adic geometry, Annals of Mathematics Studies (Princeton University Press). ISBN 9780691202099.Google Scholar
Scholze, P. and Weinstein, J., Moduli of p-divisible groups, Camb. J. Math. 1(2) (2013), 145237. MR 3272049.CrossRefGoogle Scholar
Weinstein, J., Gal(Qp/Qp) as a geometric fundamental group, International Mathematics Research Notices 2017(10) (2016), 29642997. 1073-7928.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *