Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-ndjvl Total loading time: 0.783 Render date: 2022-05-21T19:11:11.336Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Des points fixes communs pour des difféomorphismes de ${ \mathbb{S} }^{2} $ qui commutent et préservent une mesure de probabilité

Published online by Cambridge University Press:  08 February 2013

F. Béguin
Affiliation:
Université Paris 13 Nord, France
P. Le Calvez
Affiliation:
Université Pierre-et-Marie-Curie, France
S. Firmo
Affiliation:
Universidade Federal Fluminense, Brésil
T. Miernowski
Affiliation:
Université de Aix-Marseille II, France

Résumé

Nous montrons des résultats d’existence de points fixes communs pour des homéomorphismes du plan ${ \mathbb{R} }^{2} $ ou la sphère ${ \mathbb{S} }^{2} $, qui commutent deux à deux et préservent une mesure de probabilité. Par exemple, nous montrons que des ${C}^{1} $-difféomorphismes ${f}_{1} , \ldots , {f}_{n} $ de ${ \mathbb{S} }^{2} $ suffisamment proches de l’identité, qui commutent deux à deux, et qui préservent une mesure de probabilité dont le support n’est pas réduit à un point, ont au moins deux points fixes communs.

Abstract

We prove the existence of common fixed points for some homeomorphisms of the plane ${ \mathbb{R} }^{2} $ or the two-sphere ${ \mathbb{S} }^{2} $ which commute and preserve a probability measure. For example, if ${f}_{1} , \ldots , {f}_{n} $ are commuting ${C}^{1} $-diffeomorphisms of ${ \mathbb{S} }^{2} $ that are sufficiently close to the identity, and that preserve a probability measure whose support is not a single point, then they have at least two common fixed points.

Type
Research Article
Copyright
©Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonatti, Christian, Un point fixe commun pour des difféomorphismes commutants de ${S}^{2} $, Ann. of Math. (2) 129 (1) (1989), 6169.CrossRefGoogle Scholar
Bonatti, Christian, Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology 29 (1) (1990), 101126.CrossRefGoogle Scholar
Brown, Morton et Kister, James M., Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (3) (1984), 503504.Google Scholar
Brouwer, Luitzen E. J., Beweis des ebenen Translationssatzes, Math. Ann. 72 (1912), 3754.CrossRefGoogle Scholar
Druck, Suely, Fang, Fuquan et Firmo, Sebastião, Fixed points of discrete nilpotent group actions on ${S}^{2} $, Ann. Inst. Fourier 52 (4) (2002), 10751091.CrossRefGoogle Scholar
Firmo, Sebastião, A note on commuting diffeomorphisms on surfaces, Nonlinearity 18 (4) (2005), 15111526.CrossRefGoogle Scholar
Franks, John, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2) 128 (1) (1988), 139151.CrossRefGoogle Scholar
Franks, John, Handel, Michael et Parwani, Kamlesh, Fixed points of abelian actions on ${S}^{2} $, Ergodic Theory Dynam. Systems 27 (5) (2007), 15571581.CrossRefGoogle Scholar
Franks, John, Handel, Michael et Parwani, Kamlesh, Fixed points of abelian actions, J. Mod. Dyn. 1 (3) (2007), 443464.Google Scholar
Gambaudo, Jean-Marc et Ghys, Étienne, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (5) (2004), 15911617.CrossRefGoogle Scholar
Guillou, Lucien, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (2) (1994), 331351.CrossRefGoogle Scholar
Handel, Michael, Commuting homeomorphisms of ${S}^{2} $, Topology 31 (2) (1992), 293303.CrossRefGoogle Scholar
Jaulent, Olivier, Existence d’un feuilletage positivement transverse à un homéomorphisme de surface (arXiv:1206.0213).Google Scholar
Kneser, Hellmuth, Die Deformationssätze der einfach zusammenhngenden Flächen, Math. Z. 25 (1) (1926), 362372.CrossRefGoogle Scholar
Le Calvez, Patrice, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. Inst. Hautes études Sci. 102 (2005), 198.CrossRefGoogle Scholar
Le Roux, Frédéric, Étude topologique de l’espace des homéomorphismes de Brouwer. I, Topology 40 (5) (2001), 10511087.CrossRefGoogle Scholar
Lima, Elon L., Commuting vector fields on ${S}^{2} $, Proc. Amer. Math. Soc. 15 (1964), 138141.Google Scholar
Mann, Kathryn, Bounded orbits and global fixed points for groups acting on the plane (arXiv:1103.5060).Google Scholar
Plante, Joseph F., Fixed points of Lie group actions on surfaces, Ergodic Theory Dynam. Systems 6 (1) (1986), 149161.CrossRefGoogle Scholar
Viterbo, Claude, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (4) (1992), 685710.CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Des points fixes communs pour des difféomorphismes de ${ \mathbb{S} }^{2} $ qui commutent et préservent une mesure de probabilité
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Des points fixes communs pour des difféomorphismes de ${ \mathbb{S} }^{2} $ qui commutent et préservent une mesure de probabilité
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Des points fixes communs pour des difféomorphismes de ${ \mathbb{S} }^{2} $ qui commutent et préservent une mesure de probabilité
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *