We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We shall explain here an idea to generalize classical complex analytic Kleinian group theory to any odd-dimensional cases. For a certain class of discrete subgroups of $\text{PGL}_{2n+1}(\mathbf{C})$ acting on $\mathbf{P}^{2n+1}$, we can define their domains of discontinuity in a canonical manner, regarding an $n$-dimensional projective linear subspace in $\mathbf{P}^{2n+1}$ as a point, like a point in the classical one-dimensional case. Many interesting (compact) non-Kähler manifolds appear systematically as the canonical quotients of the domains. In the last section, we shall give some examples.
For $x\in (0,1]$ and a positive integer $n,$ let $S_{\!n}(x)$ denote the summation of the first $n$ digits in the dyadic expansion of $x$ and let $r_{n}(x)$ denote the run-length function. In this paper, we obtain the Hausdorff dimensions of the following sets:
Let $I(n)$ denote the number of isomorphism classes of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$, and let $G(n)$ denote the number of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ counted as sets (not up to isomorphism). We prove that both $\log G(n)$ and $\log I(n)$ satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in the limit. Of note is that $\log G(n)$ is not an additive function but is closely related to the sum of squares of additive functions. We also establish the orders of magnitude of the maximal orders of $\log G(n)$ and $\log I(n)$.
We establish existence of weighted Hardy and Rellich inequalities on the spaces $L_{p}(\unicode[STIX]{x1D6FA})$, where $\unicode[STIX]{x1D6FA}=\mathbf{R}^{d}\backslash K$ with $K$ a closed convex subset of $\mathbf{R}^{d}$. Let $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$ denote the boundary of $\unicode[STIX]{x1D6FA}$ and $d_{\unicode[STIX]{x1D6E4}}$ the Euclidean distance to $\unicode[STIX]{x1D6E4}$. We consider weighting functions $c_{\unicode[STIX]{x1D6FA}}=c\circ d_{\unicode[STIX]{x1D6E4}}$ with $c(s)=s^{\unicode[STIX]{x1D6FF}}(1+s)^{\unicode[STIX]{x1D6FF}^{\prime }-\unicode[STIX]{x1D6FF}}$ and $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$. Then the Hardy inequalities take the form
with $H=-\text{div}(c_{\unicode[STIX]{x1D6FA}}\unicode[STIX]{x1D6FB})$. The constants $b_{p},d_{p}$ depend on the weighting parameters $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ and the Hausdorff dimension of the boundary. We compute the optimal constants in a broad range of situations.
Given a vector field on a manifold $M$, we define a globally conserved quantity to be a differential form whose Lie derivative is exact. Integrals of conserved quantities over suitable submanifolds are constant under time evolution, the Kelvin circulation theorem being a well-known special case. More generally, conserved quantities are well behaved under transgression to spaces of maps into $M$. We focus on the case of multisymplectic manifolds and Hamiltonian vector fields. Our main result is that in the presence of a Lie group of symmetries admitting a homotopy co-momentum map, one obtains a whole family of globally conserved quantities. This extends a classical result in symplectic geometry. We carry this out in a general setting, considering several variants of the notion of globally conserved quantity.