Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.801 Render date: 2022-12-04T19:38:13.269Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A VARIANT OF HOFSTADTER’S SEQUENCE AND FINITE AUTOMATA

Published online by Cambridge University Press:  03 May 2013

JEAN-PAUL ALLOUCHE
Affiliation:
CNRS, Institut de Mathématiques, Université Pierre et Marie Curie, Case 247, 4 place Jussieu, F-75752 Paris Cedex 05, France email allouche@math.jussieu.fr
JEFFREY SHALLIT*
Affiliation:
School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s $q$-sequence’, J. Integer Seq. 10 (2007)], we analyze a variant of Hofstadter’s $Q$-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc.

References

Allouche, G., Allouche, J.-P. and Shallit, J., ‘Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde’, Ann. Inst. Fourier 56 (2006), 21152130.CrossRefGoogle Scholar
Allouche, J.-P. and Shallit, J., Automatic Sequences: Theory, Applications, Generalizations (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
Allouche, J.-P. and Shallit, J., ‘The ring of $k$-regular sequences, II’, Theoret. Comput. Sci. 307 (2003), 329.CrossRefGoogle Scholar
Balamohan, B., Kuznetsov, A. and Tanny, S., ‘On the behavior of a variant of Hofstadter’s$q$-sequence’, J. Integer Seq. 10 (2007), (Article 07.7.1).Google Scholar
Dalton, B., Rahman, M. and Tanny, S., ‘Spot-based generations for meta-Fibonacci sequences’, Exp. Math. 20 (2011), 129137.CrossRefGoogle Scholar
Everest, G., van der Poorten, A., Shparlinski, I. and Ward, T., Recurrence Sequences (American Mathematical Society, 2003).CrossRefGoogle Scholar
Hofstadter, D., Gödel, Escher, Bach: An Eternal Golden Braid (Basic Books, New York, 1979).Google Scholar
Isgur, A., Rahman, M. and Tanny, S., ‘Solving nonhomogeneous nested recursions using trees’, Preprint, May 12 2011, arXiv:1105.2351.Google Scholar
Pinn, K., ‘Order and chaos in Hofstadter’s $q(n)$ sequence’, Complexity 4 (1999), 4146.3.0.CO;2-3>CrossRefGoogle Scholar
Rahman, M., ‘A combinatorial interpretation of Hofstadter’s $G$-sequence’, Atl. Electron. J. Math. 5 (2012), 1621.Google Scholar
Sloane, N. J. A., ‘The on-line encyclopedia of integer sequences’, Electronic database available at http://oeis.org.Google Scholar
You have Access
6
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A VARIANT OF HOFSTADTER’S SEQUENCE AND FINITE AUTOMATA
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A VARIANT OF HOFSTADTER’S SEQUENCE AND FINITE AUTOMATA
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A VARIANT OF HOFSTADTER’S SEQUENCE AND FINITE AUTOMATA
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *