Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T14:47:09.281Z Has data issue: false hasContentIssue false

On non-Cross varieties of A-groups

Published online by Cambridge University Press:  09 April 2009

John Cossey
Affiliation:
Australian National UniversityCanberra
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to provide a proof for a result announced in [3]. The result arose from a search for just-non-Cross varieties (recall that a Cross variety is one which can be generated by a finite group, and a just-non-Cross variety is a non-Cross variety every proper subvariety of which is Cross). For the motivation for this search, we refer the reader to [12]: for related results, see [1], [12], [13].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Brady, J. M., Bryce, R. A. and Cossey, John, ‘On certain abelian-by-nilpotent varieties’, Bulletin Austral. Math. Soc. 1 (1969), 403416.Google Scholar
[2]Cossey, John, On varieties of A-groups (Thesis, Australian National University, Canberra, 1966).Google Scholar
[3]Cossey, John, ‘On varieties of A-groups’, Proc. Internat. Conf. Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967).Google Scholar
[4]Cossey, John, ‘Critical groups and the lattice of varieties’, Proc. Amer. Math. Soc. 20 (1969), 217221.CrossRefGoogle Scholar
[5]Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras (Interscience, New York, 1962).Google Scholar
[6]Gaschütz, W., ‘Endliche Gruppen mit Treuen absolut-irreduziblen Darstellungen’, Math. Nachr. 12 (1954), 253255.Google Scholar
[7]Higman, Graham, ‘Some remarks on varieties of groups’, Quart. J. Math. Oxford (2) 10 (1959), 165178.Google Scholar
[8]Higman, Graham, ‘The orders of relatively free groups’, Proc. Internat. Conf. Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967).Google Scholar
[9]Huppert, B., ‘Lineare auflösbare Gruppen’, Math. Zeitschr. 67, (1957) 469518.Google Scholar
[10]Kovács, L. G. and Newman, M. F., ‘Cross varieties of groups’, Proc. Roy. Soc. A, 292 (1966), 530536.Google Scholar
[11]Kovács, L. G. and Newman, M. F., ‘On critical groups’, J. Austral. Math. Soc. 6 (1966), 237250.Google Scholar
[12]Kovács, L. G. and Newman, M. F., ‘Just-non-Cross varieties of groups’, Proc. Internat. Conf. Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967).Google Scholar
[13]Kovács, L. G. and Newman, M. F., ‘On non-Cross varieties of groups’, J. Austral. Math. Soc. 12 (1971), 129144.Google Scholar
[14]Neumann, Hanna, Varieties of Groups (Ergebnisse der Math. und ihrer Grenzgebiete, Bd 37, Springer, Berlin, 1967).Google Scholar
[15]Taunt, D. R., ‘On A-groups’, Proc. Cambridge Phil. Soc. 45 (1949), 2442.Google Scholar