Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T10:55:54.735Z Has data issue: false hasContentIssue false

FACTORIZATION LENGTH DISTRIBUTION FOR AFFINE SEMIGROUPS III: MODULAR EQUIDISTRIBUTION FOR NUMERICAL SEMIGROUPS WITH ARBITRARILY MANY GENERATORS

Published online by Cambridge University Press:  12 January 2021

STEPHAN RAMON GARCIA
Affiliation:
Department of Mathematics, Pomona College, 610 N. College Ave. Claremont, CA 91711, USA e-mail: stephan.garcia@pomona.edupages.pomona.edu/~sg064747
MOHAMED OMAR
Affiliation:
Department of Mathematics, Harvey Mudd College, 301 Platt Blvd. Claremont, CA 91711, USA e-mail: omar@g.hmc.eduwww.math.hmc.edu/~omar
CHRISTOPHER O’NEILL*
Affiliation:
Mathematics Department, San Diego State University, San Diego, CA 92182, USAcdoneill.sdsu.edu/
TIMOTHY WESLEY
Affiliation:
Department of Mathematics, Pomona College, 610 N. College Ave. Claremont, CA 91711, USA e-mail: tgwa2017@pomona.edu

Abstract

For numerical semigroups with a specified list of (not necessarily minimal) generators, we describe the asymptotic distribution of factorization lengths with respect to an arbitrary modulus. In particular, we prove that the factorization lengths are equidistributed across all congruence classes that are not trivially ruled out by modular considerations.

Type
Research Article
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by M. Giudici

The first author was partially supported by NSF grant DMS-1800123.

References

Abhyankar, S. S., ‘Local rings of high embedding dimension’, Amer. J. Math. 89(4) (1967), 10731077.10.2307/2373418CrossRefGoogle Scholar
Arnold, V. I., ‘Weak asymptotics of the numbers of solutions of Diophantine equations’, Funktsional. Anal. i Prilozhen. 33(4) (1999), 6566.CrossRefGoogle Scholar
Baeth, N. R. and Smertnig, D., ‘Factorization theory: from commutative to noncommutative settings’, J. Algebra 441 (2015), 475551.CrossRefGoogle Scholar
Baeth, N. R. and Wiegand, R., ‘Factorization theory and decompositions of modules’, Amer. Math. Monthly 120(1) (2013), 334.10.4169/amer.math.monthly.120.01.003CrossRefGoogle Scholar
Barucci, V., Dobbs, D. E and Fontana, M., Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Vol. 598 (American Mathematical Society, Providence, RI, 1997).Google Scholar
Beck, M. and Robins, S., Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , With Illustrations by Austin, David, 2nd edn, Undergraduate Texts in Mathematics (Springer, New York, 2015).10.1007/978-1-4939-2969-6CrossRefGoogle Scholar
Bourgain, J. and Sinaĭ, Y. G., ‘Limit behavior of large Frobenius numbers’, Uspekhi Mat. Nauk 62(4) (2007), 7790.Google Scholar
Bowles, C., Chapman, S. T., Kaplan, N. and Reiser, D., ‘On delta sets of numerical monoids’, J. Algebra Appl. 5(5) (2006), 695718.10.1142/S0219498806001958CrossRefGoogle Scholar
Carlitz, L., ‘On arrays of numbers’, Amer. J. Math. 54(4) (1932), 739752.10.2307/2371100CrossRefGoogle Scholar
Carlitz, L. and Klamkin, M. S., ‘Stirling operators’, Collect. Math. 25(2) (1974), 185212.Google Scholar
De Loera, J., O’Neill, C. and Wilburne, D., ‘Random numerical semigroups and a simplicial complex of irreducible semigroups’, Electron. J. Combin . 25(4) (2018), P4.37.10.37236/7796CrossRefGoogle Scholar
De Loera, J. A., Hemmecke, R. and Matthias, K., Algebraic and Geometric Ideas in the Theory of Discrete Optimization, Vol. 14 (SIAM, 2013).Google Scholar
Garcia, S. R., Omar, M., O’Neill, C. and Yih, S., ‘Factorization length distribution for affine semigroups II: asymptotic behavior for numerical semigroups with arbitrarily many generators’, J. Combin. Theory Ser. A 178 (2021), 105358.Google Scholar
Garcia, S. R., O’Neill, C. and Yih, S., ‘Factorization length distribution for affine semigroups I: numerical semigroups with three generators’, Eur. J. Combin. 78 (2019), 190204.CrossRefGoogle Scholar
Geroldinger, A., ‘A structure theorem for sets of lengths’, Colloq. Math. 78(2) (1998), 225259.CrossRefGoogle Scholar
Geroldinger, A., Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, 278 (Chapman & Hall/CRC, Boca Raton, FL, 2006).10.1201/9781420003208CrossRefGoogle Scholar
Geroldinger, A. and Halter-Koch, F., ‘On the asymptotic behaviour of lengths of factorizations’, J. Pure Appl. Algebra 77(3) (1992), 239252.CrossRefGoogle Scholar
Geroldinger, A. and Yuan, P., ‘The set of distances in Krull monoids’, Bull. Lond. Math. Soc. 44(6) (2012), 12031208.CrossRefGoogle Scholar
O’Neill, C. and Pelayo, R., ‘Factorization invariants in numerical monoids’, in: Algebraic and Geometric Methods in Discrete Mathematics, Contemporary Mathematics, 685 (American Mathematical Society, Providence, RI, 2017), 231249.10.1090/conm/685/13713CrossRefGoogle Scholar
Pisinger, D. and Toth, P., ‘Knapsack problems’, in: Handbook of Combinatorial Optimization (Springer, Boston, MA, 1998), 299428.10.1007/978-1-4613-0303-9_5CrossRefGoogle Scholar
Rosales, J. C. and García-Sánchez, P. A., Numerical Semigroups, Developments in Mathematics, 20 (Springer, New York, 2009).10.1007/978-1-4419-0160-6CrossRefGoogle Scholar
Toscano, L., ‘Sulla iterazione dell’operatore $\mathrm{xD}$ ’, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. 8(5) (1949), 337350.Google Scholar