Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T19:34:41.218Z Has data issue: false hasContentIssue false

BOUNDS FOR A CONE-TYPE MULTIPLIER OPERATOR OF NEGATIVE INDEX IN ${ \mathbb{R} }^{3} $

Published online by Cambridge University Press:  10 April 2013

SUNGHUN CHOI*
Affiliation:
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea email zalhagge@postech.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we obtain some sharp ${L}^{p} - {L}^{q} $ estimates and the restricted weak-type endpoint estimates for the multiplier operator of negative order associated with conic surfaces in ${ \mathbb{R} }^{3} $ which have finite type degeneracy.

MSC classification

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Bak, J.-G., ‘Sharp estimates for the Bochner–Riesz operator of negative order in ${ \mathbb{R} }^{2} $’, Proc. Amer. Math. Soc. 125 (1997), 19771986.CrossRefGoogle Scholar
Börjeson, L., ‘Estimates for the Bochner–Riesz operator with negative index’, Indiana Univ. Math. J. 35 (1986), 225233.CrossRefGoogle Scholar
Bourgain, J., ‘Estimations de certaines functions maximales’, C.R. Acad. Sci. Paris 310 (1985), 499502.Google Scholar
Bourgain, J., ‘Estimates for cone multiplier’, Oper. Theory Adv. Appl. 79 (1995), 4160.Google Scholar
Carbery, A. and Soria, F., ‘Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces’, Rev. Mat. Iberoam. 4 (1988), 319337.CrossRefGoogle Scholar
Carbery, A., Seeger, A., Wainger, S. and Wright, J., ‘Class of singular integral operators along variable lines’, J. Geom. Anal. 9 (1999), 583605.CrossRefGoogle Scholar
Cho, Y., Kim, Y., Lee, S. and Shim, Y., ‘Sharp ${L}^{p} - {L}^{q} $ estimates for Bochner–Riesz operators of negative index in ${ \mathbb{R} }^{n} $, $n\geq 3$’, J. Funct. Anal. 218 (2005), 150167.CrossRefGoogle Scholar
Garrigós, G. and Seeger, A., ‘On plate decompositions of cone multipliers’, Proc. Edinb. Math. Soc. (2) 52 (2009), 631651.CrossRefGoogle Scholar
Garrigós, G., Schlag, W. and Seeger, A., ‘Improvements in Wolff’s inequality for the cone multiplier’. Preprint.Google Scholar
Gel’fand, I. M. and Shilov, G. E., Generalized Functions: Properties and Operations, Vol. 1 (Academic Press, New York and London, 1964).Google Scholar
Gutierrez, S., ‘A note on restricted weak-type estimates for Bochner–Riesz operators with negative index in ${ \mathbb{R} }^{n} $, $n\geq 2$’, Proc. Amer. Math. Soc. 128 (2000), 495501.CrossRefGoogle Scholar
Heo, Y., ‘Improved bounds for high dimensional cone multipliers’, Indiana Univ. Math. J. 58 (2009), 11871202.CrossRefGoogle Scholar
Heo, Y., Nazarov, F. and Seeger, A., ‘Radial Fourier multipliers in high dimensions’, Acta Math. 206 (2011), 5592.CrossRefGoogle Scholar
Lee, J. J., ‘Endpoint estimates for bilinear oscillatory integral operators related to restriction to the cone’, Trans. Amer. Math. Soc. 363 (2011), 763800.CrossRefGoogle Scholar
Lee, S. H., ‘Endpoint estimates for the circular maximal function’, Proc. Amer. Math. Soc. 131 (2003), 14431452.Google Scholar
Lee, S. H., ‘Some sharp bounds for the cone multiplier of negative order in ${ \mathbb{R} }^{3} $’, Bull. Lond. Math. Soc. 35 (2003), 373390.CrossRefGoogle Scholar
Lee, S. H., ‘Bilinear restriction estimates for surfaces with curvatures of different signs’, Trans. Amer. Math. Soc. 358 (2006), 35113533.CrossRefGoogle Scholar
Lee, S. H., ‘Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces’, J. Funct. Anal. 241 (2006), 5698.CrossRefGoogle Scholar
Lee, S. H. and Seo, I. H., ‘Sharp bounds for multiplier operators of negative indices associated with degenerate curves’, Math. Z. 267 (2011), 291323.CrossRefGoogle Scholar
Mockenhaupt, G., ‘A note on the cone multiplier’, Proc. Amer. Math. Soc. 177 (1993), 145151.CrossRefGoogle Scholar
Mockenhaupt, G., Seeger, A. and Sogge, C., ‘Local smoothing of Fourier integral operators and Carleson–Sjölin estimates’, J. Amer. Math. Soc. 6 (1993), 65130.Google Scholar
Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993).Google Scholar
Tao, T., ‘Endpoint bilinear restriction theorems for the cone and some sharp null form estimates’, Math. Z. 238 (2001), 215268.CrossRefGoogle Scholar
Tao, T. and Vargas, A., ‘A bilinear approach to cone multipliers. I’, Geom. Funct. Anal. 10 (2000), 185215.CrossRefGoogle Scholar
Tao, T. and Vargas, A., ‘A bilinear approach to cone multipliers. II’, Geom. Funct. Anal. 10 (2000), 216258.CrossRefGoogle Scholar
Tao, T., Vargas, A. and Vega, L., ‘A bilinear approach to the restriction and Kakeya conjectures’, J. Amer. Math. Soc. 11 (1998), 9671000.CrossRefGoogle Scholar
Wolff, T., ‘Local smoothing estimates on ${L}^{p} $ for large $p$’, Geom. Funct. Anal. 10 (2000), 12371288.CrossRefGoogle Scholar
Wolff, T., ‘A sharp cone restriction estimate’, Ann. of Math. (2) 153 (2001), 661698.CrossRefGoogle Scholar