Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T03:10:21.693Z Has data issue: false hasContentIssue false

Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis

Published online by Cambridge University Press:  12 March 2014

Extract

The following is a self-contained proof theoretic treatment of two of the principal axiom schemata of current intuitionistic analysis: the axiom of bar induction (Brouwer's bar theorem) and the axiom of continuity. The results are formulated in terms of formal derivability in elementary intuitionistic analysis H(§ 1), so the positive (i.e., derivability) results also apply to elementary classical analysis Z1 (Appendix 1). Both schemata contain the combination of quantifiers νfΛn, where f, g, … are intended to range over free choice sequences of suitable kinds of objects x, y, …; for example, natural numbers or sequences of natural numbers, and n, m, p, r, … over natural numbers (non-negative integers).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brouwer, L. E.J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 6075.CrossRefGoogle Scholar
[2]Brouwer, L. E. J., Points and spaces, Canadian Journal of Mathematics, vol. 6 (1954), pp. 117.CrossRefGoogle Scholar
[3]Feferman, S. and Lévy, A., Independence results in set theory by Cohen's method. II, Notices of the American Mathematical Society, vol. 10 (1963), p. 593.Google Scholar
[4]Gentzen, G., Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, new series, no. 4 (1938), Hirzel, Leipzig, 1938.Google Scholar
[5]Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.CrossRefGoogle Scholar
[6]Kleene, S. C., Recursive functions and intuitionistic mathematics, Proceedings of the International Congress of Mathematicians (Cambridge, Mass., 1950), vol. 1, 1952, pp. 679685.Google Scholar
[7]Kleene, S. C., Introduction to Metamathematics, Van Nostrana, New York, 1952.Google Scholar
[8]Kleene, S. C., Arithmetical predicates and function quantifiers, Transactions of the American Mathematical Society, vol. 79 (1955), pp. 312340.CrossRefGoogle Scholar
[9]Kleene, S. C., Countable functionals, Constructivity in Mathematics, North-Holland Publishing Co., Amsterdam, 1959, pp. 81100.Google Scholar
[10]Kleene, S. C. and Vesley, R. E., Foundations of Intuitionistic Mathematics, North-Holland Publishing Co., Amsterdam, 1965.Google Scholar
[11]Kreisel, G., On weak completeness of intuitionistic predicate logic, this Journal, vol. 27 (1962), pp. 139158.Google Scholar
[12]Kreisel, G., Proof theoretic results on intuitionistic higher order arithmetic, this Journal, vol. 27 (1962), p. 380.Google Scholar
[13]Kreisel, G., Mathematical logic, Lectures on Modern Mathematics, vol. 3, ed. Saaty, , John Wiley and Sons, Inc., New York, 1965.Google Scholar
[14]Parikh, R. J., Some generalizations of the notion of well ordering, Notices of the American Mathematical Society vol. 9 (1962), p. 142.Google Scholar
[15]Schütte, K., Beweistheorie, Springer, Berlin, 1960.Google Scholar
[16]Spector, C., Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics, Proceedings of the Symposia in Pure Mathematics, vol. 5, American Mathematical Society, Provindence, 1962, pp. 127.CrossRefGoogle Scholar