Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:42:53.909Z Has data issue: false hasContentIssue false

Quelques précisions sur la D.O.P. et la profondeur d'une théorie

Published online by Cambridge University Press:  12 March 2014

D. Lascar*
Affiliation:
Uer de Mathématique et Informatique, Université Paris VII, 75251 Paris 05, France

Abstract

We give here alternative definitions for the notions that S. Shelah has introduced in recent papers: the dimensional order property and the depth of a theory. We will also give a proof that the depth of a countable theory, when denned, is an ordinal recursive in T.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RÉFÉRENCES

[B]Barwise, J., Admissible sets and structures, Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
[H]Harrison, J., Recursive pseudo-well-orderings, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526543.CrossRefGoogle Scholar
[HM]Harrington, L. and Makkai, M., An exposition of Shelah's main gap, Notre Dame Journal of Formal Logic (to appear).Google Scholar
[K]Kechris, A. S., Σ11 derivatives with applications, M.I.T. Logic Seminar, Cambridge, Massachusetts, 1974.Google Scholar
[L]Lascar, D., Ordre de Rudin-Keisler et poids dans les théories stables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 28 (1982), pp. 413430.CrossRefGoogle Scholar
[LP]Lascar, D. and Poizat, B., An introduction to forking, this Journal, vol. 44 (1979), pp. 330350.Google Scholar
[Sa]Saffe, J., The number of uncountable models of ω-stable theories, Annals of Pure and Applied Logic, vol. 24 (1983), pp. 231261.CrossRefGoogle Scholar
[Sh1]Shelah, S., The lazy model-theoretician's guide to stability, Logique et Analyse, Nouvelle Série, vol. 18 (1975), pp. 241308.Google Scholar
[Sh2]Shelah, S., Classification theory and the number of nonisomorphic models, North-Holland, Amsterdam, 1978.Google Scholar
[Sh3]Shelah, S., The spectrum problem. I, II, Israel Journal of Mathematics, vol. 43 (1982), pp. 324–356, 357364.CrossRefGoogle Scholar
[Sh4]Shelah, S., The spectrum problem. III (preprint).Google Scholar