Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:07:47.246Z Has data issue: false hasContentIssue false

Simulations of Kelvin–Helmholtz modes in the dusty plasma environment of noctilucent clouds

Published online by Cambridge University Press:  01 October 2007

HEINZ M. WIECHEN*
Affiliation:
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

Abstract

We present results of quantitative multi-fluid simulations of the nonlinear dynamics of Kelvin–Helmholtz modes in the partially ionized dusty plasma of noctilucent clouds. Noctilucent clouds are a typical example of dusty plasmas in the Earth's mesosphere/lower thermosphere. A specific feature observed in noctilucent clouds is wavy, turbulent structure. Possible explanations for these structures, which are discussed in the literature, are based on hydrodynamical models. The dusty plasma aspect has been widely neglected, so far. In this paper we examine the nonlinear dynamics of Kelvin–Helmholtz modes in noctilucent clouds from the viewpoint of dusty plasma dynamics. The corresponding results are in good qualitative and quantitative agreement with observations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birk, G. T., Kopp, A. and Shukla, P. K. 1996 Generalized magnetohydrodynamic equations for partially ionized dusty magnetoplasmas: derivation and applications. Phys. Plasmas 3, 35643572.CrossRefGoogle Scholar
Birk, G. T. and Wiechen, H. 2002 Shear flow instabilities in magnetized partially ionized dense dusty plasmas. Phys. Plasmas 9, 964970.CrossRefGoogle Scholar
Fritts, D. C., Isler, J. R. and Andreassen, O. 1994 Gravity wave breaking in two and three dimensions, 2. J. Geophys. Res. 99, 81098123.Google Scholar
Fritts, D. C., Isler, J. R., Thomas, G. E. and Andreassen, O. 1993 Wave breaking signatures in noctilucent clouds. Geophys. Res. Lett. 20, 20392042.CrossRefGoogle Scholar
Fritts, D. C., Palmer, T. L., Andreassen, O. and Lie, I. 1996 Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows, part I: Comparison of two- and three-dimensional flows. J. Atmos. Sci. 53, 31733191.2.0.CO;2>CrossRefGoogle Scholar
Gibson-Wilde, D., Werne, J. and Fritts, D. 2000 Direct numerical simulation of VHF radar measurements of turbulence in the mesosphere. Radio Sci. 35, 783798.CrossRefGoogle Scholar
Goldberg, R. A. and Pesnell, W. D. 2005 Experimental evidence for dusty plasmas in the polar summer mesosphere using rocket, lidar and radar measurements. In: Proc. 35th COSPAR Scientific Assembly, Paris, France, 18–25 July 2004, Elsevier, Oxford, p. 321.Google Scholar
Hauritz, B. 1964 Comments on wave forms in noctilucent clouds. Geophysics Institute Science Report UGAR 160, University of Alaska, Fairbanks.Google Scholar
Hecht, J. H., Liu, A. Z., Walterscheid, R. L. and Rudy, R. J. 2005 J. Geophys. Res., 110, doi:10.1029/2003JD003908.Google Scholar
Huba, J. D. 1998 NRL Plasma Formula. Washington, DC: Naval Research Laboratory.Google Scholar
Klaassen, G. P. and Peltier, W. R. 1985a The evolution of finite amplitude Kelvin–Helmholtz billows in two spatial dimensions. J. Atmos. Sci. 42, 13211339.2.0.CO;2>CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. 1985b The onset of turbulence in finite amplitude Kelvin–Helmholtz billows. J. Fluid Mech. 155, 135.CrossRefGoogle Scholar
Kopp, A., Schröer, A., Birk, G. T. and Shukla, P. K. 1997 Fluid equations governing the dynamics and energetics of partially ionized dusty magnetoplasmas. Phys. Plasmas 4, 44144418.CrossRefGoogle Scholar
Li, L., Zhong-Yuan, L. and Zhen-Xing, L. 2000 Effect of dust charge fluctuations on Kelvin–Helmholtz instability in a cold dust plasma. Phys. Plasmas 7, 424427.CrossRefGoogle Scholar
Liu, H.-L., Hays, P. B. & Roble, R. G. 1999 A numerical study of gravity wave breaking and impacts on turbulence and mean state. J. Atmos. Sci. 56, 21522177.2.0.CO;2>CrossRefGoogle Scholar
Lloyd, K. H., Low, C. H. and Vincent, R. A. 1973 Turbulence, billows and gravity waves in a higher shear region of the upper atmosphere. Planet. Space Sci. 21, 653661.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. A. 2004 Dusty plasmas in the laboratory, industry and space. Phys. Today July, 3238.Google Scholar
Otto, A. and Fairfield, D. H. 2000 Kelvin–Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. 105, 2117521190.CrossRefGoogle Scholar
Schröer, A., Birk, G. T. and Kopp, A. 1998 DENISIS—a three-dimensional partially ionized dusty magnetoplasma code. Comp. Phys. Comm. 112, 722.CrossRefGoogle Scholar
Shukla, P. K. 1994 Shielding of a slowly moving test charge in dusty plasma. Phys. Plasmas 1, 13621363.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. and Bingham, B. 1995 Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671674.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar
Thomas, G. E. 1991 Mesospheric clouds and the physics of the mesopause region. Rev. Geophys. 29, 553575.CrossRefGoogle Scholar
Wiechen, H. 2006 Simulations of self-magnetization in dusty space plasmas comparing different charge polarities and charge numbers of the dust. Planet. Space Sci. 54, 7177.CrossRefGoogle Scholar
Wiechen, H. and Birk, G. T. 2001 Kelvin–Helmholtz instabilities in dusty plasma–neutral gas systems. In: Proc. of ISSS-6 (ed. Büchner, J., Dum, C. T. and Scholer, M.). Copernicus Gesellschaft, Katlenburg–Lindau, pp. 14.Google Scholar