Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T06:48:58.311Z Has data issue: false hasContentIssue false

Simulation of the scrape-off layer region of tokamak devices

Published online by Cambridge University Press:  12 February 2015

Paolo Ricci*
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne, Switzerland
*
Email address for correspondence: paolo.ricci@epfl.ch

Abstract

Understanding the key processes occurring in the tokamak scrape-off layer (SOL) is becoming of the outmost importance while we enter the ITER era and we move towards the conception of future fusion reactors. By controlling the heat exhaust, by playing an important role in determining the overall plasma confinement, and by regulating the impurity level in tokamak core, the dynamics of the fusion fuel in the SOL is, in fact, related to some of the most crucial issues that the fusion program is facing today. Because of the limited diagnostic access and in view of predicting the SOL dynamics in future devices, simulations are becoming crucial to address the physics of this region. The present paper, which summarizes the lecture on SOL simulations that was given during the 7th ITER international school (August 25–29, 2014, Aix-en-Provence, France), provides a brief overview of the simulation approaches to the SOL dynamics. First, disentangling the complexity of the system, the key physics processes occurring in the SOL are described. Then, the different simulation approaches to the SOL dynamics are presented, from first-principles kinetic and fluid models, to the phenomenological analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braginskii, S. I. 1965 The plasma boundary of magnetic fusion devices. In: Reviews of Plasma Physics, Vol. 1, New York: Consultants Bureau, p. 205.Google Scholar
Brooks, J. N., Kirschner, A., Whyte, D. G., Ruzic, D. N. and Alman, D. A. 2003 Advances in the modeling of chemical erosion/redeposition of carbon divertors and application to the JET tritium codeposition problem. J. Nuclear Mater. 313–316 (0), 424428.Google Scholar
Chang, C. S.et al. 2009 Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry. J. Phys.: Conf. Ser. 180 (1), 012 057.Google Scholar
Chodura, R. 1988 Nonlocal heat-flux in the scrape-off layer of a high-temperature plasma. Contrib. Plasma Phys. 28 (4–5), 325327.Google Scholar
D'Ippolito, D. A., Myra, J. R. and Zweben, S. J. 2011 Convective transport by intermittent blob-filaments: comparison of theory and experiment. Phys. Plasmas (1994-present) 18 (6), 060 501.Google Scholar
Dudson, B. D., Umansky, M. V., Xu, X. Q., Snyder, P. B. and Wilson, H. R. 2009 BOUT++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180 (9), 14671480.Google Scholar
D'Ippolito, D. A. and Myra, J. R. 2003 Blob stability and transport in the scrape-off-layer. Phys. Plasmas (1994–present) 10 (10), 40294039.CrossRefGoogle Scholar
Eich, T., Sieglin, B., Scarabosio, A., Fundamenski, W., Goldston, R. J. and Herrmann, A. 2011 Inter-ELM power decay length for JET and ASDEX Upgrade: measurement and comparison with heuristic drift-based model. Phys. Rev. Lett. 107, 215 001.Google Scholar
Garcia, O. E., Horacek, J., Pitts, R. A., Nielsen, A. H., Fundamenski, W., Graves, J. P., Naulin, V. and Rasmussen, J. J. 2006 Interchange turbulence in the TCV scrape-off layer. Plasma Phys. Control. Fusion 48 (1), L1.Google Scholar
Geier, A., Krieger, K., Elder, J. D., Pugno, R., Rohde, V. and Team, The ASDEX Upgrade 2003 Modeling of tungsten transport in the SOL for sources at the central column of ASDEX upgrade using DIVIMP. J. Nucl. Mater. 313–316 (0), 12161220.Google Scholar
Halpern, F. D., Ricci, P., Jolliet, S., Loizu, J. and Mosetto, A. 2014 Theory of the scrape-off layer width in inner-wall limited tokamak plasmas. Nucl. Fusion 54 (4), 043 003.Google Scholar
Halpern, F. D.et al. and Contributors, JET-EFDA 2013a Theory-based scaling of the SOL width in circular limited tokamak plasmas. Nucl. Fusion 53 (12), 122 001.Google Scholar
Halpern, F. D., Jolliet, S., Loizu, J., Mosetto, A. and Ricci, P. 2013b Ideal ballooning modes in the tokamak scrape-off layer. Phys. Plasmas (1994–present) 20 (5), 052 306.Google Scholar
Hassanein, A. and Konkashbaev, I. 2003 Comprehensive modeling of ELMs and their effect on plasma-facing surfaces during normal tokamak operation. J. Nucl. Mater. 313–316 (0), 664669. (plasma-Surface Interactions in Controlled Fusion Devices 15).Google Scholar
Heikkinen, J. A., Kiviniemi, T. P., Kurki-Suonio, T., Peeters, A. G. and Sipil, S. K. 2001 Particle simulation of the neoclassical plasmas. J. Comput. Phys. 173 (2), 527548.Google Scholar
ITER Physics Expert Group on Divertor, on Divertor Modelling, ITER Physics Expert Group, Database & Editors, ITER Physics Basis 1999 Chapter 4: Power and particle control. Nucl. Fusion 39 (12), 2391.Google Scholar
Kirschner, A., Brooks, J. N., Philipps, V., Coad, J. P. and contributors to the EFDA-JET Workprogramme 2003 Hydrocarbon transport in the mkiia divertor of JET. Plasma Phys. Control. Fusion 45 (3), 309.Google Scholar
Knight, P. J., Thyagaraja, A., Edwards, T. D., Hein, J., Romanelli, M. and McClements, K. G. 2012 Centori: a global toroidal electromagnetic two-fluid plasma turbulence code. Comput. Phys. Commun. 183 (11), 23462363.Google Scholar
Kukushkin, A. S., Pacher, H. D., Kotov, V., Pacher, G. W. and Reiter, D. 2011 Finalizing the {ITER} divertor design: the key role of SOLPS modeling. Fusion Eng. Des. 86 (12), 28652873.Google Scholar
LaBombard, B., Golfinopoulos, T., Brunner, D., Terry, J. L., Davis, E., Greenwald, M., Hughes, J. W. and Team, Alcator C-Mod 2014 New insights on boundary plasma turbulence and the quasi-coherent mode in Alcator C-Mod using a Mirror Langmuir Probe. Phys. Plasmas 21 (5), 056 108.Google Scholar
Loarte, A.et al., Divertor Physics Topical 2007 Chapter 4: Power and particle control. Nucl. Fusion 47 (6), S203.Google Scholar
Loizu, J., Ricci, P., Halpern, F. D. and Jolliet, S. 2012 Boundary conditions for plasma fluid models at the magnetic presheath entrance. Phys. Plasmas (1994-present) 19 (12), 122 307.Google Scholar
Loizu, J., Ricci, P., Halpern, F. D., Jolliet, S. and Mosetto, A. 2013 On the electrostatic potential in the scrape-off layer of magnetic confinement devices. Plasma Phys. Control. Fusion 55 (12), 124 019.CrossRefGoogle Scholar
Loizu, J., Ricci, P., Halpern, F. D., Jolliet, S. and Mosetto, A. 2014 Intrinsic toroidal rotation in the scrape-off layer of tokamaks. Phys. Plasmas (1994-present) 21 (6), 062 309.Google Scholar
Marandet, Y., Tamain, P., Futtersack, R., Ghendrih, Ph., Bufferand, H., Genesio, P. and Mekkaoui, A. July 2013 Influence of neutral particles on scrape-off layer turbulence with application to the interpretation of fast camera data. Journal of Nuclear Materials Volume 438, Supplement, Pages S518–S521.Google Scholar
Mekkaoui, S., Dudson, D., Reiter, D., Kotov, V. and Boerner, P. 2014 Self-consistent turbulence-recycling modeling in the lapd device. In: Proc. 21st Int. Conf. on Plasma Surface Interaction in Controlled Fusion Devices, Kanazawa, Japan.Google Scholar
Mosetto, A., Halpern, F. D., Jolliet, S., Loizu, J. and Ricci, P. 2013 Turbulent regimes in the tokamak scrape-off layer. Phys. Plasmas (1994-present) 20 (9), 092 308.Google Scholar
Naulin, V., Nycander, J. and Rasmussen, J. J. 1998 Equipartition and transport in two-dimensional electrostatic turbulence. Phys. Rev. Lett. 81, 41484151.Google Scholar
Omotani, J. T. and Dudson, B. D. 2013 Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer. Plasma Phys. Control. Fusion 55 (5), 055 009.Google Scholar
Pestchanyi, S. E., Wrz, H. and Landman, I. S. 2002 Impurity production and edge plasma pollution during iter-feat elms. Plasma Phys. Control. Fusion 44 (6), 845.Google Scholar
Pitts, R. A., Kukushkin, A., Loarte, A., Martin, A., Merola, M., Kessel, C. E., Komarov, V. and Shimada, M. 2009 Status and physics basis of the iter divertor. Phys. Scr. 2009(T138), 014 001.Google Scholar
Reiter, D., Kever, H., Wolf, G. H., Baelmans, M., Behrisch, R. and Schneider, R. 1991 Helium removal from tokamaks. Plasma Phys. Control. Fusion 33 (13), 1579.Google Scholar
Ribeiro, T. T. and Scott, B. 2005 Tokamak turbulence computations on closed and open magnetic flux surfaces. Plasma Phys. Control. Fus. 47 (10), 1657.Google Scholar
Ricci, P., Halpern, F. D., Jolliet, S., Loizu, J., Mosetto, A., Fasoli, A., Furno, I. and Theiler, C. 2012 Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation. Plasma Phys. Control. Fusion 54 (12), 124 047.Google Scholar
Ricci, P. and Rogers, B. N. 2013 Plasma turbulence in the scrape-off layer of tokamak devices. Phys. Plasmas (1994-present) 20 (1), 010 702.Google Scholar
Rognlien, T. D., Brown, P. N., Campbell, R. B., Kaiser, T. B., Knoll, D. A., Mchugh, P. R., Porter, G. D., Rensink, M. E. and Smith, G. R. 1994 2-d fluid transport simulations of gaseous radiative divertors. Contrib. Plasma Phys. 34 (2–3), 362367.Google Scholar
Russell, D. A., Myra, J. R., D'Ippolito, D. A., Munsat, T. L., Sechrest, Y., Maqueda, R. J., Stotler, D. P., Zweben, S. J. and Team, The NSTX 2011 Comparison of scrape-off layer turbulence simulations with experiments using a synthetic gas puff imaging diagnostic. Phys. Plasmas (1994-present) 18 (2), 022 306.Google Scholar
Sarazin, Y. and Ghendrih, Ph. 1998 Intermittent particle transport in two-dimensional edge turbulence. Phys. Plasmas (1994-present) 5 (12), 42144228.Google Scholar
Schneider, R., Reiter, D., Zehrfeld, H. P., Braams, B., Baelmans, M., Geiger, J., Kastelewicz, H., Neuhauser, J. and Wunderlich, R. 1992 B2-EIRENE simulation of ASDEX and ASDEX-Upgrade scrape-off layer plasmas. Proc. 10th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices, J. Nucl. Mater. 196–198 (0), 810815.Google Scholar
Shi, E. L., Hakim, A. H. and Hammett, G. W. 2014 A gyrokinetic 1D scrape-off layer model of an ELM heat pulse. arXiv:1409.2520.Google Scholar
Shimizu, K., Takizuka, T., Sakurai, S., Tamai, H., Takenaga, H., Kubo, H. and Miura, Y. 2003 Simulation of divertor detachment characteristics in JT-60 with superconducting coils. J. Nucl. Mater. 313–316 (0), 12771281.Google Scholar
Simonini, R., Corrigan, G., Radford, G., Spence, J. and Taroni, A. 1994 Models and numerics in the multi-fluid 2-d edge plasma code EDGE2D/U. Contrib. Plasma Phys. 34 (2–3), 368373.Google Scholar
Stangeby, P. C. 2000 The Plasma Boundary of Magnetic Fusion Devices. Bristol and Philadelphia: Institute of Physics Publishing.Google Scholar
Stotler, D. and Karney, C. 1994 Neutral gas-transport modeling with DEGAS-2. Contrib. Plasma Phys. 34 (2–3), 392397.Google Scholar
Takizuka, T., Hosokawa, M. and Shimizu, K. 2003 Two-dimensional particle simulation of the flow control in SOL and divertor plasmas. J. Nucl. Mater. 313–316 (0), 13311334.Google Scholar
Tamain, P., Ghendrih, Ph., Tsitrone, E., Grandgirard, V., Garbet, X., Sarazin, Y., Serre, E., Ciraolo, G. and Chiavassa, G. 2010 Tokam-3d: a 3d fluid code for transport and turbulence in the edge plasma of tokamaks. J. Comput. Phys. 229 (2), 361378.Google Scholar
Taroni, A., Corrigan, G., Radford, G., Simonini, R., Spence, J. and Weber, S. 1992 The multi-fluid codes EDGEID and EDGE2D: models and results. Contrib. Plasma Phys. 32 (3–4), 438443.Google Scholar
Tskhakaya, D. 2012 On recent massively parallelized PIC simulations of the SOL. Contrib. Plasma Phys. 52 (5–6), 490499.Google Scholar
Yagi, M., Itoh, S.-I., Itoh, K. and Diamond, P. H. 2008 Disparate scale nonlinear interactions in edge turbulence. Contrib. Plasma Phys. 48 (1–3), 1322.Google Scholar
Zeiler, A., Drake, J. F. and Rogers, B. 1997 Nonlinear reduced Braginskii equations with ion thermal dynamics in toroidal plasma. Phys. Plasmas (1994–present) 4 (6), 21342138.Google Scholar
Zohm, H.et al. 2013 On the physics guidelines for a tokamak DEMO. Nucl. Fusion 53 (7), 073 019.Google Scholar