Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T01:58:49.251Z Has data issue: false hasContentIssue false

Propagation of an ultrashort, high-intensity laser pulse in gas-target plasma

Published online by Cambridge University Press:  28 May 2012

XIAOFANG WANG
Affiliation:
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China (wang1@ustc.edu.cn)
GUANGHUI WANG
Affiliation:
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China (wang1@ustc.edu.cn)
ZHANNAN MA
Affiliation:
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China (wang1@ustc.edu.cn)
KEGONG DONG
Affiliation:
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China (wang1@ustc.edu.cn) Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China (yqgu@caep.ac.cn)
BIN ZHU
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China (yqgu@caep.ac.cn)
YUCHI WU
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China (yqgu@caep.ac.cn)
YUQIU GU
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China (yqgu@caep.ac.cn)

Abstract

For high-energy gain of electron acceleration by a laser wakefield, a stable or guiding propagation of an ultrashort, high-intensity laser pulse in a gas-target plasma is of fundamental importance. Preliminary experiments were carried out for the propagation of 30-fs, ~100-TW laser pulses of intensities ~1019W/cm2 in plasma of densities ~1019/cm3. Self-guiding length of nearly 1.4 mm was observed in a gas jet and 15 mm in a hydrogen-filled capillary. Fluid-dynamics simulations are used to characterize the two types of gas targets. Particle-in-cell simulations indicate that in the plasma, after the pulse's evolution of self-focusing and over-focusing, the high-intensity pulse could be stably guided with a beam radius close to the plasma wavelength. At lower plasma densities, a preformed plasma channel of a parabolic density profile matched to the laser spot size would be efficient for guiding the pulse.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dong, K. G. 2011 PhD Dissertation, Hefei: University of Science and Technology of China. http://acad.cnki.netGoogle Scholar
Dong, K. G. et al. ., 2010 Acta Phys. Sin. 59, 411.Google Scholar
Dong, K. G. et al. . 2011 Acta Phys. Sin. 60, 095202.Google Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 IEEE Trans. Plasma Sci. 24, 252.Google Scholar
Fauer, J.Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. and Malka, V. 2004 Nature 431, 541.Google Scholar
Fluent Inc. 2003 FLUENT User's Guide, Lebanon, NH: Fluent Inc.Google Scholar
Froula, D. H. et al. . 2009 Phys. Rev. Lett. 103, 215006.Google Scholar
Geddes, C. G. R.Toth, Cs., Tilborg, J. V., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 Nature 431, 538.CrossRefGoogle Scholar
Geddes, C. G. R., Toth, Cs., Tilborg, J. V., Esarey, E., Schroeder, C. B., Cary, J. and Leemans, W. P. 2005 Phys. Rev. Lett. 95, 145002.Google Scholar
Gordienko, S. and Pukhov, A. 2005 Phys. Plasmas 12, 043109.Google Scholar
Hafz, N. A. M. et al. . 2008 Nat. Photon. 2, 571.Google Scholar
Hsieh, C. T., Huang, C. M., Chang, C. L., Ho, Y. C., Chen, Y. S., Lin, J. Y., Wang, J., and Chen, S. Y. 2006 Phys. Rev. Lett. 96, 095001.Google Scholar
Kneip, S. et al. . 2009 Phys. Rev. Lett. 103, 035002.Google Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, Cs., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Nat. Phys. 2, 696.Google Scholar
LPAW 2011 Book of Abstracts In: Proc Laser and Plasma Accelerators Workshop 2011, 20 June 24 June, 2011, Wuzhen and Shanghai, China.Google Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Phys. Rev. ST Accel. Beams 10, 061301.Google Scholar
Ma, Z. and Wang, X. 2011 High Power Laser Part. Beams 23, 2687.Google Scholar
Mangles, S. P. D. et al. . 2004 Nature 431, 535.Google Scholar
Mordovanakis, A. G. et al. . 2009 Phys. Rev. Lett. 103, 235001.Google Scholar
Nieter, C. and Cary, J. R. 2004 J. Comput. Phys. 196, 448.Google Scholar
Osterhoff, J. et al. . 2008 Phys. Rev. Lett. 101, 085002.Google Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 2002 Appl. Phys. B 74, 355.Google Scholar
Ralph, J. E., Marsh, K. A., Pak, A. E., Lu, W., Clayton, C. E., Fang, F., Mori, W. B. and Joshi, C. 2009 Phys. Rev. Lett. 102, 175003.Google Scholar
Sun, G. Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Phys. Fluids 30, 526.Google Scholar
Thomas, A. G. R. et al. . 2007 Phys. Rev. Lett. 98, 095004.Google Scholar
Tsung, F. S., Narang, R., Mori, W. B., Joshi, C., Fonseca, R. A. and Silva, L. O. 2004 Phys. Rev. Lett. 93, 185002; Tsung, F. S., Lu, W., Tzoufras, M., Mori, W. B., Joshi, C., Vieira, J. M., Silva, L. O., and Fonseca, R. A. 2006 Phys. Plasmas 13, 056708.Google Scholar
Wang, F., 2004 Analysis of Computer Fluid Dynamics Principle and Application of CFD Software, Beijing: Tsinghua University Press, pp. 6.Google Scholar
Wang, X., Krishnan, M., Saleh, N., Wang, H. and Umstadter, D. 2000 Phys. Rev. Lett. 84, 5324.Google Scholar
Wang, X., Nishikawa, K. and Nemoto, K. 2006 Phys. Plasmas 13, 080702.Google Scholar
Wei, X. et al. . 2008 J. Phys. Conf. Ser. 112, 032010.Google Scholar
Wu, Y., He, Y., Zhu, B., Wen, T., Dong, K., Guo, Y., Sun, L., Li, Q., Wang, X. and Gu, Y. 2010 High Power Laser Part. Beams 22, 2871.Google Scholar
Wu, Y. C., Wang, L., Wang, H. B., Liu, H. J., Ge, F. F., Chen, J. B., Zheng, Z. J., Zhang, B. H., Gu, Y. Q. and Yang, C. W. 2007 High Power Laser Part. Beams 19, 1129.Google Scholar