Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:43:36.962Z Has data issue: false hasContentIssue false

Nonlinear electromagnetic wave interactions in Hall–MHD plasmas

Published online by Cambridge University Press:  02 September 2010

DASTGEER SHAIKH
Affiliation:
Department of Physics and Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA (dastgeer.shaikh@uah.edu)
P. K. SHUKŁA
Affiliation:
Institut für Theoretische Physik, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.rub.de)

Abstract

We have developed a massively parallelized fully three-dimensional (3D) compressible Hall–magnetohydrodynamic (MHD) code to investigate inertial range electromagnetic wave cascades and dissipative processes in the regime, where characteristic length scales associated with plasma fluctuations are smaller than ion gyroradii. Such regime is ubiquitously present in the solar wind and many other collisionless space plasmas. Particularly, in the solar wind, the high time resolution databases depict a spectral break near the end of the 5/3 spectrum that corresponds to a high-frequency regime where the electromagnetic turbulent cascades cannot be explained by the usual MHD models. This refers to a second inertial range, where turbulent cascades follow a k−7/3 (where k is a wavenumber) spectrum in which the characteristic electromagnetic fluctuations evolve typically on kinetic Alfvén time scales. In this paper, we describe results from our 3D compressible Hall–MHD simulations that explain the observed k−7/3 spectrum in the solar wind plasma, energy cascade, anisotropy, and other spectral features.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bhattacharjee, A. 2004 Annu. Rev. Astron. Astrophys. 42, 365.CrossRefGoogle Scholar
[2]Bhattacharjee, A., Ma, A. W. and Wang, X. 2001 Phys. Plasmas 8, 1829.CrossRefGoogle Scholar
[3]Biskamp, B., Schwarz, E. and Drake, J. F. 1996 Phys. Rev. Lett. 76, 1264.CrossRefGoogle Scholar
[4]Brodin, G. and Stenflo, L. 1990 Contrib. Plasma Phys. 30, 413.CrossRefGoogle Scholar
[5]Denskat, K. U., Beinroth, H. J. and Neubauer, F. M. 1983 J. Geophys. Res. 54, 60.Google Scholar
[6]Ghosh, S., Siregar, E., Roberts, D. A. and Goldstein, M. L. 1996 J. Geophys. Res. 101, 2493.CrossRefGoogle Scholar
[7]Goldstein, M. L., Roberts, D. A. and Fitch, C. A. 1994 J. Geophys. Res. 99, 11519.CrossRefGoogle Scholar
[8]Goldstein, M. L., Roberts, D. A. and Matthaeus, W. H. 1995 Astron. Astrophys. 33, 283.CrossRefGoogle Scholar
[9]Howes, G. 2008 Phys. Plasmas 15, 5904.CrossRefGoogle Scholar
[10]Kolmogorov, A. N. 1941 Dokl. Acad. Sci. URSS 30, 301.Google Scholar
[11]Kraichnan, R. H. 1965 Phys. Fluids 8, 1385.CrossRefGoogle Scholar
[12]Leamon, R. J., Matthaeus, W. H., Smith, C. W. and Wong, H. K. 1998 Astrophys. J. Lett. 507, L181.CrossRefGoogle Scholar
[13]Mahajan, S. and Krishan, V. 2005 Nonlin. Process. Geophys. 12, 75.Google Scholar
[14]Marsch, E. 2006 Living Rev. Solar Phys. 3, 1.CrossRefGoogle Scholar
[15]Mendonça, J. T. and Shukla, P. K. 2007 Phys. Plasmas 14, 122304.CrossRefGoogle Scholar
[16]Mendonça, J. T., Serbeto, A., Davies, J. and Bingham, R. 2008 Plasma Phys. Control. Fusion 50, 105009.CrossRefGoogle Scholar
[17]Mendonça, J. T. and Rowlands, G. 1985 Plasma Phys. Control. Fusion 27, 777.CrossRefGoogle Scholar
[18]Narita, Y., Glassmeier, K.-H., Sahraoui, F. and Goldstein, M. L. 2010 Phys. Rev. Lett. 104, 171101.CrossRefGoogle Scholar
[19]Shaikh, D. and Zank, G. P. 2003 Astrophys. J. 599, 715.Google Scholar
[20]Shaikh, D. and Zank, G. P. 2005 Phys. Plasmas 12, 122310.CrossRefGoogle Scholar
[21]Shaikh, D. 2004 Phys. Scr. 69, 216.Google Scholar
[22]Shaikh, D. 2009 J. Plasma Phys. 75, 117.CrossRefGoogle Scholar
[23]Shaikh, D. & Shukla, P. K. 2009 Phys. Rev. Lett. 102 045004.CrossRefGoogle Scholar
[24]Shaikh, D. & Zank, G. P. 2004 ApJ. 602, 29.Google Scholar
[25]Shaikh, D. & Zank, G. P. 2006 ApJ 640, 195.CrossRefGoogle Scholar
[26]Shaikh, D. & Zank, G. P. 2007 ApJ 656, 17.CrossRefGoogle Scholar
[27]Smith, C. W., Isenberg, P. A., Matthaeus, W. H. and Richardson, J. D. 2006 Astrophys. J. 638, 508.CrossRefGoogle Scholar
[28]Shukla, P. K. 1978 Nature (London) 274, 874.CrossRefGoogle Scholar
[29]Sundkvist, D., Krasnoselskikh, V., Shukla, P. K., Vaivads, A., André, M., Buchert, S. and Rème, H. 2005 Nature (London) 436, 825.CrossRefGoogle Scholar