Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T06:14:55.551Z Has data issue: false hasContentIssue false

Low-frequency electrostatic instability due to anti-loss-cone electrons

Published online by Cambridge University Press:  13 March 2009

K. G. Bhatia
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India
G. S. Lakhina
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India

Abstract

The energetic anti-loss-cone electrons can drive a low-frequency electrostatic instability, propagating transverse to the ambient magnetic field, in the presence of a cold plasma. The typical real frequency and growth rates associated with this instabifity are respectively, of the order of p being the proton cyclotron frequency). The instability has a transverse wavelength ⋍10ρee being the Larmor radius of energetic electrons). For the parameters pertinent to auroral plasma at 1RE, the quasi-linear analysis shows that the instability can give rise to an oscillating electric field Esat ⋍0.5−25 mV/ m and an increase of 100–103 K in the temperature of cold electrons. The instability may be relevant to recent observations of low-frequency turbulence on the auroral field lines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berk, H. L. & Galeev, A. A. 1967 Phys. Fluids, 10, 441.CrossRefGoogle Scholar
Bhatia, K. G. & Lakhina, G. S. 1978 J. Plaema Phys. 19, 193.Google Scholar
Buti, B. 1976 a J. Plasma Phys. 15, 105.CrossRefGoogle Scholar
Buti, B. 1976 b J. Geophys. Res. 81, 5363.Google Scholar
Buti, B. 1976 c J. Plasma Phys. 16,73.CrossRefGoogle Scholar
Buti, B. 1976 d J. Geophye. Res. 81, 6221.CrossRefGoogle Scholar
Davis, T. N. 1978 Space Sci. Rev. 22, 77.CrossRefGoogle Scholar
Frank, L. A. & Ackerson, K. L. 1971 J. Geophys. Res. 76, 3612.CrossRefGoogle Scholar
Kennel, C. F. & Engelmann, F. 1986 Phys. Fluids, 9, 2377.CrossRefGoogle Scholar
Kennel, C. F., Fredricks, R. W. & Scarf, F. L. 1970 Particles and Fields in the Magnetosphere (ed. McCormac, B. M.), p. 261. Reidel.Google Scholar
Klumpar, D. M. 1979 J. Geophys. Res. 84, 4229.CrossRefGoogle Scholar
Lakhina, G. S. 1977 Planet. Space Sci. 25, 598.CrossRefGoogle Scholar
Nambu, M. & Watanabe, T. 1975 Geophys. Res. Lett. 2, 176.CrossRefGoogle Scholar
Oya, H. 1972 J. Geophys. Res. 77, 3483.CrossRefGoogle Scholar
Roederer, J. G. 1967 J. Geophys. Res. 72, 981.CrossRefGoogle Scholar
Rosenbluth, M. N. 1965 Placma Physics, p.499. IAEA.Google Scholar
Temerin, M. 1978 J. Geophys. Res. 83, 2609.CrossRefGoogle Scholar
Ungstrup, E., Klumpar, D. M., Heikkila, J. W. 1979 J. Geophys. Res. 84, 4289.CrossRefGoogle Scholar
West, H. I., Buck, R. M. & Walton, J. R. 1973 J. Geophsy. Res. 78, 1064.CrossRefGoogle Scholar
Wu, C. S., Dillenburg, D., Gaffey, J. D. Jr, Goedert, J., Ziebell, L. F. & Freund, H. P. 1978 Phys. Fluids, 21, 1318.CrossRefGoogle Scholar