Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-21T20:09:41.918Z Has data issue: false hasContentIssue false

Ion and electron heating in the earth's bow shock region

Published online by Cambridge University Press:  13 March 2009

P. Revathy
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India
G. S. Lakhina
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India

Abstract

Ion and electron heating in the earth's bow shock region is studied in terms of the modified two stream instability by treating the electron's response to be electromagnetic and that of ions to be electrostatic. The modified two stream flute mode, driven unstable by the density and temperature gradients, can heat the ions to about 50 times their upstream temperature. However, the electrons are heated mainly by the non-flute mode and their temperature can be increased by a factor of 1·5 or more. Consequently the ions will be hotter than the electrons downstream of the shock, as observed by satellites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auer, P. L., Kilb, R. W. & Crevier, W. F. 1971 J. Geophys. Res. 76, 2927.CrossRefGoogle Scholar
Buneman, O. 1958 Phys. Rev. Lett. 1, 8.CrossRefGoogle Scholar
Buneman, O. 1959 Phys. Rev. 115, 503.CrossRefGoogle Scholar
Buti, B. & Lakhina, G. S. 1973 J. Plasma Phys. 10, 249.CrossRefGoogle Scholar
Davidson, R. C., Krall, N. A., Papadopoulos, K. & Shanny, R. 1970 Phys. Rev. Lett. 24, 579.CrossRefGoogle Scholar
Callen, J. D. & Guest, G. E. 1973 Nucl. Fusion, 13, 87.CrossRefGoogle Scholar
Fredricks, R. W., Kennel, C. F., Scarf, F. L., Crook, G. M. & Green, I. M. 1968 Phys Rev. Leit. 21, 1761.CrossRefGoogle Scholar
Fredricks, R. W., Coroniti, F. V., Kennel, C. F. & Scarf, F. L. 1970 a Phys. Rev. Lett. 24, 994.CrossRefGoogle Scholar
Fredricks, R. W., Crook, G. M., Kennel, C. F., Green, I. M. & Scarf, F. L. 1970 b J. Geophys. Res. 75, 3751.CrossRefGoogle Scholar
Hirose, A. & Alexeff, I. 1972 Nuci. Fusion, 12, 315.CrossRefGoogle Scholar
Krall, N. A. 1968 Advances in Plasma Physics vol. 1, P. 153. Interscience.Google Scholar
Krall, N. A. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 254.CrossRefGoogle Scholar
Krishnan, S. & Ravindra, M. P. 1975 Phys. Rev. Lett. 34, 978.Google Scholar
Lakhina, G. S. & Sen, A. 1973 Nucl. Fusion, 13, 913.CrossRefGoogle Scholar
Montgomery, M. D., Asbridge, J. R. & Bame, S. J. 1970 J. Geophys. Rev. 75, 1217.CrossRefGoogle Scholar
Mcbride, J. B., Ott, E., Boris, P. & Orens, J. H. 1972 N.R.L. Memorandum Report 2428.Google Scholar
Papadopoulos, K. 1971 J. Geophys. Rev. 76, 3806.CrossRefGoogle Scholar
Stringer, T. E. 1964 Plasma Phys. 6, 267.Google Scholar
Tidman, D. A. 1967 J. Geophys. Res. 72, 1799.CrossRefGoogle Scholar
Tidman, D. A. & Krall, N. A. 1970 Shock waves in collisionless plasma. Wiley.Google Scholar
Wu, C. S. & Fredricks, R. W. 1972 J. Geophys. Res. 77, 5585.CrossRefGoogle Scholar