Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-18T17:20:02.196Z Has data issue: true hasContentIssue false

Improved axial confinement in the open trap by the combination of helical and short mirrors

Published online by Cambridge University Press:  18 September 2024

Anton V. Sudnikov*
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
Ivan A. Ivanov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
Anna A. Inzhevatkina
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
Aleksey V. Kozhevnikov
Affiliation:
Novosibirsk State University, Pirogov st., 1, Novosibirsk 630090, Russia
Vladimir V. Postupaev
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
Mikhail S. Tolkachev
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
Viktor O. Ustyuzhanin
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630090, Russia
*
Email address for correspondence: a.v.sudnikov@inp.nsk.su

Abstract

The paper presents experimental results from the SMOLA device, which was built in the Budker Institute of Nuclear Physics for the verification of the helical mirror confinement idea. This concept involves active control of axial losses from the confinement zone in an open magnetic trap through the use of multiple mirrors that move in the plasma frame of reference. The discussed experiments focused on determining the cumulative effect of a helical mirror system in combination with a short segment of a stronger magnetic field. Combination of these two methods of axial flow suppression results in higher efficiency compared with each method individually. Different combinations of the mirrors were tested. The most effective flow suppression was observed if the short mirror was placed between the confinement region and the helical mirror. In this configuration, an effective mirror ratio of $R_{{\rm eff}} = 32.6\pm 7.8$ was achieved, along with a more than three-fold increase in plasma density within the confinement region. The possibility of a cumulative effect of different types of magnetic mirrors offers a way to improve the confinement performance of the reactor-grade mirror confinement devices.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagryansky, P.A., Beklemishev, A.D. & Postupaev, V.V. 2019 Encouraging results and new ideas for fusion in linear traps. J. Fusion Energy 38, 162181.Google Scholar
Beery, I., Gertsman, A. & Seeman, O. 2018 Plasma confinement by moving multiple mirrors. Plasma Phys. Control. Fusion 60, 115004.Google Scholar
Beklemishev, A.D. 2013 Helicoidal system for axial plasma pumping in linear traps. Fusion Sci. Technol. 63 (1T), 355357.Google Scholar
Beklemishev, A.D. 2016 Radial and axial transport in trap sections with helical corrugation. AIP Conf. Proc. 1771, 040006.Google Scholar
Budker, G.I., Mirnov, V.V. & Ryutov, D.D. 1982 Gas dynamics of a dense plasma in a corrugated magnetic field. In Collection of Papers. Presented at International Conference on Plasma Theory, Kiev, 1971 (ed. Skrinsky, A. N.), p. 117. Nauka.Google Scholar
Burdakov, A.V. & Postupaev, V.V. 2018 Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor. Physics-Uspekhi 61 (6), 582600.Google Scholar
Chernoshtanov, I.S. & Ayupov, D.A. 2021 Collisionless particle dynamics in trap sections with helical corrugation. Phys. Plasmas 28, 032502.Google Scholar
Forest, C.B., Anderson, J.K., Endrizzi, D., Egedal, J., Frank, S., Furlong, K., Ialovega, M., Kirch, J., Harvey, R.W., Lindley, B., et al. 2024 Prospects for a high-field, compact break-even axisymmetric mirror (BEAM) and applications. J. Plasma Phys. 90 (1), 975900101.Google Scholar
Gota, H., Binderbauer, M.W., Tajima, T., Putvinski, S., Tuszewski, M., Deng, B.H., Dettrick, S.A., Gupta, D.K., Korepanov, S., Magee, R.M., et al. 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device. Nucl. Fusion 59, 112009.Google Scholar
Hershkowitz, N., Nelson, B., Pew, J. & Gates, D. 1983 Self-emissive probes. Rev. Sci. Instrum. 54, 2934.Google Scholar
Inzhevatkina, A.A., Burdakov, A.V., Ivanov, I.A., Lomov, K.A., Postupaev, V.V., Sudnikov, A.V. & Ustyuzhanin, V.O. 2021 Investigation of the plasma rotation in SMOLA helical mirror. Plasma Phys. Rep. 47 (8), 794802.Google Scholar
Inzhevatkina, A.A., Ivanov, I.A., Postupaev, V.V., Sudnikov, A.V., Tolkachev, M.S. & Ustyuzhanin, V.O. 2024 Investigation of plasma flow velocity in the helical magnetic open trap SMOLA. Plasma Phys. Rep. 50 (1), 1.Google Scholar
Ivanov, I.A., Ustyuzhanin, V.O., Sudnikov, A.V. & Inzhevatkina, A.A. 2021 Long-pulse plasma source for SMOLA helical mirror. J. Plasma Phys. 87 (2), 845870201.Google Scholar
Jäderberg, J., Scheffel, J., Bendtz, K., Holmberg, R., Lindvall, K., Niva, P., Dahlbäck, R. & Dunne, K. 2023 Introducing the Novatron, a novel reactor concept. arXiv:2310.16711.Google Scholar
Postupaev, V.V., Sudnikov, A.V., Beklemishev, A.D. & Ivanov, I.A. 2016 Helical mirrors for active plasma flow suppression in linear magnetic traps. Fusion Engng Des. 106, 2933.Google Scholar
Ryutov, D.D. 1988 Open-ended traps. Sov. Phys. Uspekhi 31 (4), 300327.Google Scholar
Skovorodin, D., Chernoshtanov, I., Amirov, V., Astrelin, V., Bagryansky, P., Beklemishev, A., Burdakov, A., Gorbovsky, A, Kotelnikov, I., Magommedov, E., et al. 2023 Gas-dynamic multi-mirror trap GDMT. Plasma Phys. Rep. 49 (9), 10391086.Google Scholar
Sudnikov, A.V., Beklemishev, A.D., Inzhevatkina, A.A., Ivanov, I.A., Postupaev, V.V., Burdakov, A.V., Glinsky, V.V., Kuklin, K.N., Rovenskikh, A.F. & Ustyuzhanin, V.O. 2020 Preliminary experimental scaling of the helical mirror confinement effectiveness. J. Plasma Phys. 86 (5), 905860515.Google Scholar
Sudnikov, A.V., Beklemishev, A.D., Postupaev, V.V., Burdakov, A.V., Ivanov, I.A., Vasilyeva, N.G., Kuklin, K.N. & Sidorov, E.N. 2017 SMOLA device for helical mirror concept exploration. Fusion Engng Des. 122, 8693.Google Scholar
Sudnikov, A.V., Beklemishev, A.D., Postupaev, V.V., Ivanov, I.A., Inzhevatkina, A.A., Sklyarov, V.F., Burdakov, A.V., Kuklin, K.N., Rovenskikh, A.F. & Melnikov, N.A. 2019 First experimental campaign on SMOLA helical mirror. Plasma Fusion Res. 14, 2402023.Google Scholar
Sudnikov, A.V., Ivanov, I.A., Inzhevatkina, A.A., Larichkin, M.V., Lomov, K.A., Postupaev, V.V., Tolkachev, M.S. & Ustyuzhanin, V.O. 2022 a Plasma flow suppression by the linear helical mirror system. J. Plasma Phys. 88 (1), 905880102.Google Scholar
Sudnikov, A.V., Ivanov, I.A., Inzhevatkina, A.A., Larichkin, M.V., Postupaev, V.V., Sklyarov, V.F., Tolkachev, M.S. & Ustyuzhanin, V.O. 2022 b Helical magnetic mirror performance at up- and downstream directions of the axial force. J. Plasma Phys. 88 (6), 905880609.Google Scholar
Yakovlev, D., Chen, Z., Bagryansky, P., Bragin, A., Kotelnikov, I., Kuzmin, E., Prikhodko, V., Shikhovtsev, I., Usov, P., Wang, Z., et al. 2022 Conceptual design of the ALIANCE-T mirror experiment. Nucl. Fusion 62 (1), 076017.Google Scholar