Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T07:28:12.043Z Has data issue: false hasContentIssue false

Generalised quasilinear approximation of the helical magnetorotational instability

Published online by Cambridge University Press:  13 May 2016

Adam Child*
Affiliation:
Department of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
Rainer Hollerbach
Affiliation:
Department of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
Brad Marston
Affiliation:
Department of Physics, Brown University, Box 1843, Providence, RI 02912, USA
Steven Tobias
Affiliation:
Department of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
*
Email address for correspondence: mm08ac@leeds.ac.uk

Abstract

Motivated by recent advances in direct statistical simulation (DSS) of astrophysical phenomena such as out-of-equilibrium jets, we perform a direct numerical simulation (DNS) of the helical magnetorotational instability (HMRI) under the generalised quasilinear approximation (GQL). This approximation generalises the quasilinear approximation (QL) to include the self-consistent interaction of large-scale modes, interpolating between fully nonlinear DNS and QL DNS whilst still remaining formally linear in the small scales. In this paper we address whether GQL can more accurately describe low-order statistics of axisymmetric HMRI when compared with QL by performing DNS under various degrees of GQL approximation. We utilise various diagnostics, such as energy spectra in addition to first and second cumulants, for calculations performed for a range of Reynolds and Hartmann numbers (describing rotation and imposed magnetic field strength respectively). We find that GQL performs significantly better than QL in describing the statistics of the HMRI even when relatively few large-scale modes are kept in the formalism. We conclude that DSS based on GQL (GCE2) will be significantly more accurate than that based on QL (CE2).

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.CrossRefGoogle ScholarPubMed
Bai, X. N. & Stone, J. M. 2014 Magnetic flux concentration and zonal flows in magnetorotational instability turbulence. Astrophys. J. 796, 31.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. Astrophys. J. 376, 214233.CrossRefGoogle Scholar
Bouchet, F., Nardini, C. & Tangarife, T. 2013 Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier–Stokes equations. J. Stat. Phys. 153, 572625.CrossRefGoogle Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2013 Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory. J. Atmos. Sci. 72, 16891712.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2008 Formation of jets by baroclinic turbulence. J. Atmos. Sci. 65, 3353.CrossRefGoogle Scholar
Flanagan, K., Clark, M., Collins, C., Cooper, C. M., Khalzov, I. V., Wallace, J. & Forest, C. B. 2015 Prospects for observing the magnetorotational instability in the plasma Couette experiment. J. Plasma Phys. 81, 345810401.CrossRefGoogle Scholar
Gissinger, C., Goodman, J. & Ji, H. 2012 The role of boundaries in the magnetorotational instability. Phys. Fluids 24, 074109.CrossRefGoogle Scholar
Gressel, O. & Pessah, M. E. 2015 Characterizing the mean-field dynamo in turbulent accretion disks. Astrophys. J. 810, 59.CrossRefGoogle Scholar
Guseva, A., Willis, A. P., Hollerbach, R. & Avila, M. 2015 Transition to magnetorotational turbulence in Taylor–Couette flow with imposed azimuthal magnetic field. New J. Phys. 17, 093018.CrossRefGoogle Scholar
Hollerbach, R. 2008 Spectral solutions of the MHD equations in cylindrical geometry. Intl J. Pure Appl. Maths 42 (4), 575.Google Scholar
Hollerbach, R. & Fournier, A. 2004 End-effects in rapidly rotating cylindrical Taylor–Couette flow. In American Institute of Physics Conference Series, vol. 733, pp. 114121. AIP Publishing, arXiv:astro-ph/0506081.Google Scholar
Hollerbach, R. & Rüdiger, G. 2005 New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95 (12), 124501.CrossRefGoogle ScholarPubMed
Hollerbach, R., Teeluck, V. & Rüdiger, G. 2010 Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 104, 044502.CrossRefGoogle ScholarPubMed
Ji, H., Goodman, J. & Kageyama, A. 2001 Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. R. Astron. Soc. 325, L1L5.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 2010 Magnetorotational instability: recent developments. Phil. Trans. R. Soc. Lond. A 368 (1916), 16071633.Google ScholarPubMed
Kirillov, O. N. & Stefani, F. 2010 On the relation of standard and helical magnetorotational instability. Astrophys. J. 712 (1), 52.CrossRefGoogle Scholar
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591633.CrossRefGoogle Scholar
Knobloch, E. 1996 Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic flows. Phys. Fluids 8, 14461454.CrossRefGoogle Scholar
Liu, W., Goodman, J., Herron, I. & Ji, H. 2006 Helical magnetorotational instability in magnetized Taylor–Couette flow. Phys. Rev. E 74, 056302.CrossRefGoogle ScholarPubMed
Marston, J. B., Chini, G. P. & Tobias, S. M.2016 The generalised quasilinear approximation: application to zonal jets, arXiv:1601.06720.Google Scholar
Marston, J. B., Qi, W. & Tobias, S. M.2014 Direct statistical simulation of a jet, arXiv:1412.0381.Google Scholar
Meheut, H., Fromang, S., Lesur, G., Joos, M. & Longaretti, P. Y. 2015 Angular momentum transport and large eddy simulations in magnetorotational turbulence: the small Pm limit. Astron. Astrophys. 579, A117.CrossRefGoogle Scholar
Nornberg, M. D., Ji, H., Schartman, E., Roach, A. & Goodman, J. 2010 Observation of magnetocoriolis waves in a liquid metal Taylor–Couette experiment. Phys. Rev. Lett. 104 (7), 074501.CrossRefGoogle Scholar
Priede, J. 2011 Inviscid helical magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. E 84, 066314.CrossRefGoogle ScholarPubMed
Priede, J., Grants, I. & Gerbeth, G. 2007 Inductionless magnetorotational instability in a Taylor–Couette flow with a helical magnetic field. Phys. Rev. E 75, 047303.CrossRefGoogle Scholar
Roach, A. H., Spence, E. J., Gissinger, C., Edlund, E. M., Sloboda, P., Goodman, J. & Ji, H. 2012 Observation of a free-Shercliff-layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502.CrossRefGoogle ScholarPubMed
Rüdiger, G., Hollerbach, R., Stefani, F., Gundrum, T., Gerbeth, G. & Rosner, R. 2006 The traveling-wave MRI in cylindrical Taylor–Couette flow: comparing wavelengths and speeds in theory and experiment. Astrophys. J. Lett. 649 (2), L145.CrossRefGoogle Scholar
Rüdiger, G. & Zhang, Y. 2001 MHD instability in differentially-rotating cylindric flows. Astron Astrophys. 378 (1), 302308.CrossRefGoogle Scholar
Schartman, E., Ji, H. & Burin, M. J. 2009 Development of a Couette–Taylor flow device with active minimization of secondary circulation. Rev. Sci. Instrum. 80, 024501.CrossRefGoogle ScholarPubMed
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505.CrossRefGoogle Scholar
Squire, J. & Bhattacharjee, A. 2015 Statistical simulation of the magnetorotational dynamo. Phys. Rev. Lett. 114 (8), 085002.CrossRefGoogle ScholarPubMed
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.CrossRefGoogle Scholar
Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G. & Szklarski, J. 2009 Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80 (6), 066303.CrossRefGoogle Scholar
Suzuki, T. K. & Inutsuka, S. I. 2014 Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields. Astrophys. J. 784, 121.CrossRefGoogle Scholar
Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727 (2), 127.CrossRefGoogle Scholar
Tobias, S. M. & Marston, J. B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110 (10), 104502.CrossRefGoogle ScholarPubMed
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between rotating cylinders in a magnetic field. Sov. Phys. JETP 36, 995.Google Scholar