Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T12:55:26.881Z Has data issue: false hasContentIssue false

Existing and new applications of micropellet injection (MPI) in magnetic fusion

Published online by Cambridge University Press:  22 April 2016

Zhehui Wang*
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Robert Lunsford
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, NJ 08544, USA
Dennis K. Mansfield
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, NJ 08544, USA
Jacob H. Nichols
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, NJ 08544, USA
*
Email address for correspondence: zwang@lanl.gov

Abstract

The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma–material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andruczyk, D., Ruzic, D. N., Allain, J. P. & Curreli, D. 2015 HIDRA: Hybrid Illinois device for research and applications. Fusion Sci. Technol. 68, 497500.CrossRefGoogle Scholar
Bacharis, M., Coppins, M. & Allen, J. E. 2010 Dust in tokamaks: an overview of the physical model of the dust in tokamaks code. Phys. Plasmas 17, 042505, 1–11.Google Scholar
Baines, M. J., Williams, I. P. & Asebiomo, A. S. 1965 Resistance to the motion of a small sphere moving through a gas. Mon. Not. R. Astron. Soc. 130, 6374.Google Scholar
Baylor, L. R., Combs, S. K., Foust, C. R., Jernigan, T. C., Meitner, S. J., Parks, P. B., Caughman, J. B., Maruyama, S., Qualls, A. L., Rasmussen, D. A. et al. 2009 Pellet fueling, ELM pacing, and disruption mitigation technology development for ITER. Nucl. Fusion 49, 085013, 1–8.Google Scholar
Baylor, L. R., Commaux, N., Jernigan, T. C., Brooks, N. H., Combs, S. K., Evans, T. E., Fenstermacher, M. E., Isler, R. C., Lasnier, C. J., Meitner, S. J. et al. 2013 Reduction of edge-localized mode intensity using high-repetition-rate pellet injection in tokamak H-mode plasmas. Phys. Rev. Lett. 110, 245001, 1–5.Google Scholar
Behrisch, R. 1991 Particle bombardment and energy fluxes to the vessel walls in controlled thermonuclear fusion devices. In Atomic and Plasma–Material Interaction Data for Fusion, vol. 1, pp. 716. IAEA.Google Scholar
Beidler, C., Grieger, G., Herrnegger, F., Harmeyer, E., Kisslinger, J., Lotz, W., Maassberg, H., Merkel, P., Nuhrenberg, J., Rau, F. et al. 1990 Physics and engineering design for W7-X. Fusion Technol. 17, 148.CrossRefGoogle Scholar
Brooks, J. N. 2002 Modeling of sputtering erosion/redeposition – status and implications for fusion design. Fusion Engng Des. 60, 515526.CrossRefGoogle Scholar
Canik, J. M., Maingi, R., Evans, T. E., Bell, R. E., Gerhardt, S. P., Kugel, H. W., Leblanc, B. P., Manickam, J., Menard, J. E., Osborne, T. H. et al. 2010 ELM destabilization by externally applied non-axisymmetric magnetic perturbations in NSTX. Nucl. Fusion 50, 034012, 1–8.Google Scholar
Clementson, J., Beiersdorfer, P., Roquemore, A. L., Skinner, C. H., Mansfield, D. K., Hartzfeld, K. & Lepson, J. K. 2010 Experimental setup for tungsten transport studies at the NSTX tokamak. Rev. Sci. Instrum. 81, 10E326, 1–3.Google Scholar
Doehaerd, Th., Goldfinger, P. & Waelbroeck, F. 1952 Direct determination of the sublimation energy of carbon. J. Chem. Phys. 20, 757.CrossRefGoogle Scholar
Federici, G., Skinner, C. H., Brooks, J. N., Coad, J. P., Grisolia, C., Haasz, A. A., Hassanein, A., Philipps, V., Pitcher, C. S., Roth, J. et al. 2001 Plasma–material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 41 (12R), 19672137.Google Scholar
Hu, J. S., Ren, J., Sun, Z., Zuo, G. Z., Yang, Q. X., Li, J. G., Mansfield, D. K., Zakharov, L. E. & Ruzic, D. N. 2014 An overview of lithium experiments on HT-7 and EAST during 2012. Fusion Engng Des. 89, 28782885.CrossRefGoogle Scholar
Krasheninnikov, S. I., Smirnov, R. D. & Rudakov, D. L. 2011 Dust in magnetic fusion devices. Plasma Phys. Control. Fusion 53, 083001, 1–54.Google Scholar
Kuteev, B. V., Sergeev, V. Y. & Tsendin, L. D. 1984 Two-dimensional kinetic model for the evaporation of hydrogen pellets in a tokamak. Sov. J. Plasma Phys. 10 (6), 675679.Google Scholar
Lang, P. T., Conway, G. D., Eich, T., Gruber, L., Günter, O., Horton, S., Kallenbach, L. D., Kaufmann, S., Lorenz, A., Maraschek, M. et al. 2004 ELM pace making and mitigation by pellet injection in ASDEX upgrade. Nucl. Fusion 44, 665677.CrossRefGoogle Scholar
Lang, P. T., Loarte, A., Saibene, G., Baylor, L. R., Becoulet, M., Cavinato, M., Clement-Lorenzo, S., Daly, E., Evans, T. E., Fenstermacher, M. E. et al. 2013 ELM control strategies and tools: status and potential for ITER. Nucl. Fusion 53, 043004, 1–24.Google Scholar
Leonard, A. W., Herrmann, A., Itami, K., Lingertat, J., Loarte, A., Osborne, T. H. & Suttrop, W. 1999 The impact of ELMs on the ITER divertor. J. Nucl. Mater. 266–269, 109117.Google Scholar
Loarte, A., Huijsmans, G., Futatani, S., Baylor, L. R., Evans, T. E., Orlov, D. M., Schmitz, O., Becoulet, M., Cahyna, P., Gribov, Y. et al. 2014 Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation. Nucl. Fusion 54, 033007, 1–18.Google Scholar
Mansfield, D. K., Roquemore, A. L., Carroll, T., Sun, Z., Hu, J. S., Zhang, L., Liang, Y. F., Gong, X. Z., Li, J. G., Guo, H. Y. et al. 2013 First observations of ELM triggering by injected lithium granules in EAST. Nucl. Fusion 53, 113023, 1–7.CrossRefGoogle Scholar
Nichols, J., Roquemore, A. L., Davis, W., Mansfield, D. K., Skinner, C. H., Feibush, E., Boeglin, W., Patel, R., Abolafia, D., Hartzfeld, K. et al. 2011 3-D reconstruction of pre-characterized lithium and tungsten dust particle trajectories in NSTX. J. Nucl. Mater. 415, S1098S1101.Google Scholar
Physics Applications Inc. http://www.physicsapp.com/two-stage_gas_guns.html (last accessed 2015).Google Scholar
Pigarov, A. Y., Krasheninnikov, S. I., Soboleva, T. K. & Rognlien, T. D. 2005 Dust-particle transport in tokamak edge plasmas. Phys. Plasmas 12, 122508, 1–15.Google Scholar
Pitts, R. A., Carpentier, S., Escourbiac, F., Hirai, T., Komarov, V., Lisgo, S., Kukushkin, A. S., Loarte, A., Merola, M., Sashala Naik, A. et al. 2013 A full tungsten divertor for ITER: physics issues and design status. J. Nucl. Mater. 438, S48S56.CrossRefGoogle Scholar
Plöckl, B., Lang, P. T., Jehl, J., Prechtl, M. & Sotier, S. 2011 Comparison of different pellet injection systems for ELM pacing. Fusion Engng Des. 86, 10221025.Google Scholar
Raitses, Y., Skinner, C. H., Jiang, F. & Duffy, T. S. 2008 Raman spectroscopy of carbon dust samples from NSTX. J. Nucl. Mater. 375, 365369.Google Scholar
Rapp, J., Biewer, T. M., Canik, J., Caughman, J. B. O., Goulding, R. H., Hillis, D. L., Lore, J. D. & Owen, L. W. 2013 The development of plasma–material interaction facilities for the future of fusion technology. Fusion Sci. Technol. 64, 237244.Google Scholar
Ratynskaia, S., Vignitchouk, L., Tolias, P., Bykov, I., Bergsker, H., Litnovsky, A., Den Harder, N. & Lazzaro, E. 2013 Migration of tungsten dust in tokamaks: role of dust–wall collisions. Nucl. Fusion 53, 123002, 1–10.Google Scholar
Rosenbluth, M. N. & Putvinski, S. V. 1997 Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37 (10), 13551362.Google Scholar
Schaffer, M. J., Menard, J. E., Aldan, M. P., Bialek, J. M., Evans, T. E. & Moyer, R. A. 2008 Study of in-vessel nonaxisymmetric ELM suppression coil concepts for ITER. Nucl. Fusion 48, 024004, 1–14.Google Scholar
Shu, A., Collette, A., Drake, K., Grün, E., Horányi, M., Kempf, S., Mocker, A., Munsat, T., Northway, P., Srama, R. et al. 2012 3 MV hypervelocity dust accelerator at the Colorado center for lunar dust and atmospheric studies. Rev. Sci. Instrum. 83 (7), 075108, 1–8.Google Scholar
Smirnov, R. D., Pigarov, A. Yu., Rosenberg, M., Krasheninnikov, S. I. & Mendis, D. A. 2007 Modelling of dynamics and transport of carbon dust particles in tokamaks. Plasma Phys. Control. Fusion 49, 347371.Google Scholar
Thomas, E., Konopka, U., Artis, D., Lynch, B., Leblanc, S., Adams, S., Merlino, R. L. & Rosenberg, M. 2015 The magnetized dusty plasma experiment (MDPX). J. Plasma Phys. 81, 345810206, 1–21.Google Scholar
Ticos, C. M., Wang, Z., Delzanno, G. L. & Lapenta, G. 2006a Plasma dragged microparticles as a method to measure plasma flows. Phys. Plasmas 13, 103501, 1–10.CrossRefGoogle Scholar
Ticos, C. M., Wang, Z., Dorf, L. A. & Wurden, G. A. 2006b Plasmadynamic hypervelocity dust injector for the National Spherical Torus Experiment. Rev. Sci. Instrum. 77, 10E304, 1–3.Google Scholar
Ticos, C. M., Wang, Z., Wurden, G. A., Kline, J. L., Montgomery, D. S. & Dorf, L. A. 2008 Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities. Phys. Rev. Lett. 100, 155002, 1–4.Google Scholar
Voinier, C., Skinner, C. & Roquemore, A. 2005 Electrostatic dust detection on remote surfaces. J. Nucl. Mater. 346, 266271.Google Scholar
Wang, Z., Skinner, C. H., Delzanno, G. L., Krasheninnikov, S. I., Lapenta, G. M., Pigarov, A. Yu., Shukla, P. K., Smirnov, R. D., Ticos, C. M. & West, W. P. 2008 Physics of dust in magnetic fusion devices. In New Aspects of Plasma Physics, Proceedings of the ICTP Summer College on Plasma Physics, pp. 394475. World Scientific.CrossRefGoogle Scholar
Wang, Z., Ticos, C. M. & Wurden, G. A. 2007 Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas. Phys. Plasmas 14, 103701, 1–11.Google Scholar
Wang, Z. & Wurden, G. A. 2003 Hypervelocity dust beam injection for internal magnetic field mapping. Rev. Sci. Instrum. 74, 18871891.Google Scholar
Wang, Z. & Wurden, G. A. 2004 Hypervelocity dust beam injection for national spherical torus experiment. Rev. Sci. Instrum. 75, 34363438.Google Scholar
Wu, S. 2007 An overview of the EAST project. Fusion Engng Des. 82, 463471.Google Scholar
Xiao, W. W., Diamond, P. H., Kim, W. C., Yao, L. H., Yoon, S. W., Ding, X. T., Hahn, S. H., Kim, J., Xu, M., Chen, C. Y. et al. 2012 ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory. Nucl. Fusion 52, 114027, 1–8.CrossRefGoogle Scholar