Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:33:07.408Z Has data issue: false hasContentIssue false

Effect of beam pre-bunching on gain and efficiency in a surface wave-pumped free electron laser

Published online by Cambridge University Press:  22 May 2012

SURESH C. SHARMA
Affiliation:
Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No. 1, Sector-22, Rohini, Delhi-110085, India (bjyotsna28@yahoo.com)
JYOTSNA SHARMA
Affiliation:
Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No. 1, Sector-22, Rohini, Delhi-110085, India (bjyotsna28@yahoo.com)
ANURADHA BHASIN
Affiliation:
Department of Electronics and Communications, Northern India Engineering College, New Delhi, India
RITU WALIA
Affiliation:
Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No. 1, Sector-22, Rohini, Delhi-110085, India (bjyotsna28@yahoo.com)

Abstract

A pre-bunched relativistic electron beam (REB) counter-propagating to the surface wave in the vacuum region Compton backscatters the surface wave into a high-frequency coherent radiation. Plasma supports the surface wave that acquires a large wave number k0z around pump wave frequency $\omega _0 = {{\omega _p } {/ {\vphantom {{\omega _p } {\sqrt 2 }}} \kern-\nulldelimiterspace} {\sqrt 2 }}$, where ωp is the plasma frequency. The surface wave extends into the vacuum region and can be employed as a wiggler for the generation of sub-millimeter waves. The growth rate, efficiency, and gain were evaluated based on experimentally known parameters relevant to free electron laser (FEL). It was found that the growth rate, efficiency, and gain of the surface wave-pumped FEL increase with the modulation index Δ, which has the maximum value when approaching unity in addition to when the frequency and wave number of the pre-bunched beam are comparable to that of the radiation wave, i.e., ω01 ~ ω1 and k01 ~ k1. The growth rate of FEL instability scales as one-third power of beam density in the Compton regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balakirev, U. A., Miroshnichenko, V. I. and Iainberg, Ya. B. 1986 J. Plasma Phys. 12, 563.Google Scholar
Beniwal, V., Sharma, S. C. and Sharma, M. K. 2004 Phys. Plasmas 11, 5716.CrossRefGoogle Scholar
Bhasin, A. and Sharma, S. C. 2007 Phys. Plasmas 14, 73102.CrossRefGoogle Scholar
Brau, C. 1990 Free Electron Laser. San Diego, CA: Academic, p. 11.Google Scholar
Carmel, Y., Granatestein, V. L. and Grover, A. 1983 Phys. Rev. Lett. 51, 566.CrossRefGoogle Scholar
Chen, K. R. and Dawson, J. M. 1993 IEEE Trans. Plasma Sci. 21, 151.CrossRefGoogle Scholar
Cohen, M., Eichenbaum, A., Arbel, M., Ben-Haim, D.Kleinman, H., Draznin, M., Kugel, A., Yakover, I. M. and Gover, A. 1995 Phys. Rev . Lett. 74, 3812.CrossRefGoogle Scholar
Cohen, M.et al. 1995 Nucl. Instr. Methods Phys. Res. A 358, 82.CrossRefGoogle Scholar
Danly, B. G., Bekefi, G., Davidson, R. C., Temkin, R. J., Tran, T. M. and Wurtele, J. S. 1987 IEEE J. Quantum Electron. QE-23 (9), 103.CrossRefGoogle Scholar
Freund, H. P., O'Shea, P. G. and Neumann, J. 2003 Nucl. Instr. Methods Phys. Res. A 507, 400.CrossRefGoogle Scholar
Friedman, M., Krall, J., Lau, Y. Y. and Serlin, V. 1988 J. Appl. Phys. 64, 3353.CrossRefGoogle Scholar
Gardelle, J., Labrouche, J., Marchese, G., Rullier, J. L., Villate, D. and Donohue, J. T. 1996 Phys. Plasmas 3, 4197.CrossRefGoogle Scholar
Joshi, C., Katosouleas, T., Dawson, J. M., Yan, Y. T. and Slater, J. M. 1987 IEEE J. Quantum Electron. QE-23, 1571.CrossRefGoogle Scholar
Kehs, R. A., Carmel, Y., Granatstein, V. L. and Destler, W. W. 1988 Phys. Rev . Lett. 60, 279.CrossRefGoogle Scholar
Krall, J. and Lau, Y. Y. 1988 Appl. Phys. Lett. 52, 431.CrossRefGoogle Scholar
Marshall, T. C. 1985 Free Electron Laser., New York: Macmillan, 191 pp.Google Scholar
Saito, K., Takayama, K., Ozaki, T., Kishiro, J., Ebihara, K. and Hiramatsu, S. 1996 Nucl. Instr. Methods Phys. Res. A 375, 237.CrossRefGoogle Scholar
Sharma, S. C. and Bhasin, A. 2007 Phys. Plasmas 14, 53101.CrossRefGoogle Scholar
Sharma, A. and Tripathi, V. K. 1990 Phys. Fluids B 2, 2787.CrossRefGoogle Scholar
Sharma, S. C. and Tripathi, V. K. 1995 IEEE Trans. Plasma Sci. 23, 792.CrossRefGoogle Scholar
Shibata, Yet al. 1997 Phys. Rev. Lett. 78, 2740.CrossRefGoogle Scholar
Tran, T. M., Danly, B. G. and Wurtele, J. S. 1987 IEEE J. Quantum Electron. QE-23, 1578.CrossRefGoogle Scholar
Tripathi, V. K. and Liu, C. S. 1988 Phys. Lett. 132, 47.CrossRefGoogle Scholar