Skip to main content Accessibility help
Hostname: page-component-544b6db54f-rcd7l Total loading time: 0.274 Render date: 2021-10-22T12:52:17.460Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Toward laboratory torsional spine magnetic reconnection

Published online by Cambridge University Press:  06 November 2017

David L. Chesny*
OrangeWave Innovative Science, LLC, Moncks Corner, SC, 29461, USA
N. Brice Orange
OrangeWave Innovative Science, LLC, Moncks Corner, SC, 29461, USA
Hakeem M. Oluseyi
Florida Institute of Technology, Department of Physics and Space Sciences, Melbourne, FL,  32901, USA
David R. Valletta
OrangeWave Innovative Science, LLC, Moncks Corner, SC, 29461, USA
Email address for correspondence:


Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines – a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a ${\lesssim}1~\text{m}^{3}$ apparatus, TSR can be achieved in dense plasma regimes ( ${\sim}10^{24}~\text{m}^{-3}$ ) in magnetic fields of ${\sim}10^{-1}~\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin ${\lesssim}20~\unicode[STIX]{x03BC}\text{m}$ current sheets on time scales of ${\lesssim}10~\text{ns}$ . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

Research Article
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abdou, A. E., Ismail, M. I., Mohamed, A. E., Lee, S., Saw, S. H. & Verma, R. 2012 Preliminary results of Kansas State University dense plasma focus. IEEE Trans. Plasma Sci. 40, 27412744.CrossRefGoogle Scholar
Bak, P., Tang, C. & Wiesenfeld, K. 1987 Self-organized criticality – an explanation of 1/f noise. Phys. Rev. Lett. 59, 381384.CrossRefGoogle ScholarPubMed
Biskamp, D. 1986 Magnetic reconnection via current sheets. Phys. Fluids 29, 15201531.CrossRefGoogle Scholar
Brown, M. R., Cothran, C. D. & Fung, J. 2006 Two fluid effects on three-dimensional reconnection in the Swarthmore Spheromak Experiment with comparisons to space data. Phys. Plasmas 13 (5), 056503.CrossRefGoogle Scholar
Büchner, J. 1999 Three-dimensional magnetic reconnection in astrophysical plasmas – kinetic approach. Astrophys. Space Sci. 264, 2542.CrossRefGoogle Scholar
Bures, B. L., Krishnan, M. & James, C. 2012 A plasma focus electronic neutron generator. IEEE Trans. Plasma Sci. 40, 10821088.CrossRefGoogle Scholar
Bures, B. L., Krishnan, M., Madden, R. E. & Blobner, F. 2010 Enhancing neutron emission from a 500-J plasma focus by altering the anode geometry and gas composition. IEEE Trans. Plasma Sci. 38, 667671.CrossRefGoogle Scholar
Caballero Bendixsen, L. S., Bott-Suzuki, S. C., Cordaro, S. W., Krishnan, M., Chapman, S., Coleman, P. & Chittenden, J. 2016 Axial mass fraction measurements in a 300 kA dense plasma focus. Phys. Plasmas 23 (9), 093112.CrossRefGoogle Scholar
Cazzola, E., Curreli, D., Markidis, S. & Lapenta, G. 2016 On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas. Phys. Plasmas 23 (11), 112108.CrossRefGoogle Scholar
Chang, T. 1992 Low-dimensional behavior and symmetry breaking of stochastic systems near criticality - can these effects be observed in space and in the laboratory? IEEE Trans. Plasma Sci. 20, 691694.CrossRefGoogle Scholar
Chang, T. 1999 Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail. Phys. Plasmas 6, 41374145.CrossRefGoogle Scholar
Chesny, D.2013 Non-potential magnetic fields and magnetic reconnection in low collisional plasmas: discovery of solar EUV mini-sigmoids and development of novel in-space propulsion systems. PhD thesis, Florida Institute of Technology.Google Scholar
Chesny, D. L., Oluseyi, H. M. & Orange, N. B. 2016 Dynamic flaring non-potential fields on quiet sun network scales. Astrophys. J. 822, 72.CrossRefGoogle Scholar
Chesny, D. L., Oluseyi, H. M., Orange, N. B. & Champey, P. R. 2015 Quiet-sun network bright point phenomena with sigmoidal signatures. Astrophys. J. 814, 124.CrossRefGoogle Scholar
Dahlin, J. T., Drake, J. F. & Swisdak, M. 2014 The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 21 (9), 092304.CrossRefGoogle Scholar
Dungey, J. W. 1953 Lxxvi. conditions for the occurrence of electrical discharges in astrophysical systems. Lond. Edin. Dublin Phil. Mag. J. Sci. 44 (354), 725738.CrossRefGoogle Scholar
Edwards, S. J. & Parnell, C. E. 2015 Null point distribution in global coronal potential field extrapolations. Solar Phys. 290, 20552076.CrossRefGoogle Scholar
Egedal, J., Fasoli, A., Porkolab, M. & Tarkowski, D. 2000 Plasma generation and confinement in a toroidal magnetic cusp. Rev. Sci. Instrum. 71, 33513361.CrossRefGoogle Scholar
Egedal, J., Fasoli, A., Tarkowski, D. & Scarabosio, A. 2001 Collisionless magnetic reconnection in a toroidal cusp. Phys. Plasmas 8, 19351943.CrossRefGoogle Scholar
Egedal, J., Fox, W., Katz, N., Porkolab, M., Reim, K. & Zhang, E. 2007 Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98 (1), 015003.CrossRefGoogle ScholarPubMed
El-Aragi, G. M. 2010 Ion beam emission within a low energy focus plasma (0.1 kJ) operating with hydrogen. Z. Naturforsch. A 65, 606612.CrossRefGoogle Scholar
Filevich, J., Rocca, E., Hammarsten, E., Jankowska, M., Marconi, R., Smith, R., Keenan, J., Dunn, S., Moon, V., Shlyaptsev, J. et al. 2003 Interferometric studies of laser-created plasmas using compact soft x-ray lasers. Proc. SPIE 5197, 5197–5197–12.CrossRefGoogle Scholar
Filevich, J., Rocca, J. J., Marconi, M. C., Smith, R. F., Dunn, J., Keenan, R., Hunter, J. R., Moon, S. J., Nilsen, J., Ng, A. et al. 2004 Picosecond-resolution soft-x-ray laser plasma interferometry. Appl. Opt. 43, 39383946.CrossRefGoogle ScholarPubMed
Frank, A. G., Bogdanov, S. Y., Markov, V. S., Ostrovskaya, G. V. & Dreiden, G. V. 2005 Experimental study of plasma compression into the sheet in three-dimensional magnetic fields with singular X lines. Phys. Plasmas 12 (5), 052316.CrossRefGoogle Scholar
Freed, M. S., Longcope, D. W. & McKenzie, D. E. 2015 Three-year global survey of coronal null points from potential-field-source-surface (PFSS) modeling and solar dynamics observatory (SDO) observations. Solar Phys. 290, 467490.CrossRefGoogle Scholar
Fuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M. & Trattner, K. J. 2016 Magnetospheric multiscale science mission profile and operations. Space Sci. Rev. 199, 77103.CrossRefGoogle Scholar
Galsgaard, K., Priest, E. R. & Titov, V. S. 2003 Numerical experiments on wave propagation towards a 3D null point due to rotational motions. J. Geophys. Res. 108, 1042.CrossRefGoogle Scholar
Gonzalez, W. & Parker, E. 2016 Magnetic reconnection. Magnetic Reconnection: Concepts and Applications 427, 101142.Google Scholar
Goodzeit, C. L., Meinke, R. B. & Ball, M.2005 Concentric tilted double-helix dipoles and higher-order multipole magnets. UNITED STATES PATENT US 6921042 B1, 10/067,487.Google Scholar
Grasso, D., Lazzaro, E., Borgogno, D. & Comisso, L. 2016 Open problems of magnetic island control by electron cyclotron current drive. J. Plasma Phys. 82 (6), 595820603.CrossRefGoogle Scholar
Grasso, D., Margheriti, L., Porcelli, F. & Tebaldi, C. 2006 Letter to the Editor: Magnetic islands and spontaneous generation of zonal flows. Plasma Phys. Control. Fusion 48, L87L95.CrossRefGoogle Scholar
Grava, J., Purvis, M. A., Filevich, J., Marconi, M. C., Rocca, J. J., Dunn, J., Moon, S. J. & Shlyaptsev, V. N. 2008 Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry. Phys. Rev. E 78, 016403.Google ScholarPubMed
Guillory, J., Rose, D. V. & Lerner, E. J. 2009 Theory of electron current filamentation instability and ion density filamentation in the early development of a DPF discharge. In American Institute of Physics Conference Series (ed. Kusse, B. R. & Hammer, D. A.), American Institute of Physics Conference Series, vol. 1088, pp. 203206. American Institute of Physics.Google Scholar
Hart, P. J. 1964 Modified snowplow model for coaxial plasma accelerators. J. Appl. Phys. 35, 34253431.CrossRefGoogle Scholar
Heo, H. & Park, D. K. 2002 Measurement of argon ion beam and x-ray energies in a plasma focus discharge. Phys. Scr. 65, 350355.CrossRefGoogle Scholar
Hosseinpour, M. 2014 Test particle acceleration in torsional spine magnetic reconnection. Astrophys. Space Sci. 353, 379387.CrossRefGoogle Scholar
Hosseinpour, M., Mehdizade, M. & Mohammadi, M. A. 2014 Comparison of test particle acceleration in torsional spine and fan reconnection regimes. Phys. Plasmas 21 (10), 102904.CrossRefGoogle Scholar
Huba, J. D.2016 NRL plasma formulary. In Naval Res. Lab., p. 71. U.S. Naval Research Laboratory.Google Scholar
Imshennik, V. S. & Syrovatskiǐ, S. I. 1967 Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field. Sov. J. Exp. and Theor. Phys. 25, 656.Google Scholar
Ji, H., Bhattacharjee, A., Prager, S., Daughton, W. S., Bale, S. D., Carter, T. A., Crocker, N., Drake, J. F., Egedal, J., Sarff, J. et al. 2014 FLARE (Facility for Laboratory Reconnection Experiments): a major next-step for laboratory studies of magnetic reconnection. In AGU Fall Meeting Abstracts, American Geophysical Union (AGU).Google Scholar
Ji, H., Yamada, M., Hsu, S. & Kulsrud, R. 1998 Experimental test of the sweet-parker model of magnetic reconnection. Phys. Rev. Lett. 80, 32563259.CrossRefGoogle Scholar
Kallenrode, M.-B. 2004 Space Physics: An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres, 3rd edn. Springer.CrossRefGoogle Scholar
Karlický, M. 2014 Solar flares: radio and X-ray signatures of magnetic reconnection processes. Research in Astronomy and Astrophysics 14, 753772.CrossRefGoogle Scholar
Kivelson, M. G. & Russell, C. T. 1995 Introduction to Space Physics Cambridge University Press.Google Scholar
Krishnan, M. & Thompson, J.2010 Dense Plasma Focus Apparatus. UNITED STATES PATENT US 7,679025 B1, 11/057,040.Google Scholar
Lee, S. 1983 An energy-consistent snow-plough model for pinch design. J. Phys. D 16, 24632469.CrossRefGoogle Scholar
Lee, S. & Serban, A. 1996 Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci. 24, 11011105.Google Scholar
Lerner, E. J., Krupakar Murali, S. & Haboub, A. 2011 Theory and experimental program for p-B $^{11}$ fusion with the dense plasma focus. J. Fusion Energy 30, 367376.CrossRefGoogle Scholar
Lindberg, L. & Jacobsen, C. 1961 On the amplification of the poloidal magnetic flux in a plasma. Astrophys. J. 133, 1043.CrossRefGoogle Scholar
Longcope, D. W. & Parnell, C. E. 2009 The number of magnetic null points in the quiet sun corona. Solar Phys. 254, 5175.CrossRefGoogle Scholar
Meinke, R., Senti, M. & Stelzer, G. 1997 Novel design of superconducting helical dipole magnet. In APS Meeting Abstracts, American Physical Society.Google Scholar
Mitrofanov, K. N., Krauz, V. I., Kubes, P., Scholz, M., Paduch, M. & Zielinska, E. 2014 Study of the fine structure of the plasma current sheath and magnetic fields in the axial region of the PF-1000 facility. Plasma Phys. Rep. 40, 623639.CrossRefGoogle Scholar
Nalewajko, K. 2016 Applying relativistic reconnection to blazar jets. Galaxies 4, 28.CrossRefGoogle Scholar
Ngom, B. B., Smith, T. B., Huang, W. & Gallimore, A. D. 2008 Numerical simulation of the Zeeman effect in neutral xenon from NIR diode-laser spectroscopy. J. Appl. Phys. 104 (2), 023303023303–14.CrossRefGoogle Scholar
Nishizuka, N., Hayashi, Y., Tanabe, H., Kuwahata, A., Kaminou, Y., Ono, Y., Inomoto, M. & Shimizu, T. 2012 A laboratory experiment of magnetic reconnection: outflows, heating, and waves in chromospheric jets. Astrophys. J. 756, 152.CrossRefGoogle Scholar
Noonan, W. A., Jones, T. G. & Ottinger, P. F. 1997 Laser induced fluorescence diagnostic for measuring small magnetic fields. Rev. Sci. Instrum. 68 (1), 10321035.CrossRefGoogle Scholar
Olshevsky, V., Divin, A., Eriksson, E., Markidis, S. & Lapenta, G. 2015 Energy dissipation in magnetic null points at kinetic scales. Astrophys. J. 807, 155.CrossRefGoogle Scholar
Ono, Y., Morita, A., Katsurai, M. & Yamada, M. 1993 Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks. Phys. Fluids B 5, 36913701.CrossRefGoogle Scholar
Parnell, C. E., Neukirch, T., Smith, J. M. & Priest, E. R. 1997 Structure and collapse of three-dimensional magnetic neutral points. Geophys. Astrophys. Fluid Dyn. 84, 245271.CrossRefGoogle Scholar
Parnell, C. E., Smith, J. M., Neukirch, T. & Priest, E. R. 1996 The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759770.CrossRefGoogle Scholar
Pontin, D. I. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 15081522.CrossRefGoogle Scholar
Pontin, D. I. 2012 Theory of magnetic reconnection in solar and astrophysical plasmas. Phil. Trans. R. Soc. Lond. A 370, 31693192.CrossRefGoogle ScholarPubMed
Pontin, D. I., Al-Hachami, A. K. & Galsgaard, K. 2011 Generalised models for torsional spine and fan magnetic reconnection. Astron. Astrophys. 533, A78.CrossRefGoogle Scholar
Pontin, D. I. & Galsgaard, K. 2007 Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. 112, 3103.CrossRefGoogle Scholar
Pontin, D. I., Priest, E. R. & Galsgaard, K. 2013 On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774, 154.CrossRefGoogle Scholar
Priest, E. R. & Pontin, D. I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16 (12), 122101122101.CrossRefGoogle Scholar
Raouafi, N.-E., Georgoulis, M. K., Rust, D. M. & Bernasconi, P. N. 2010 Micro-sigmoids as progenitors of coronal jets: is eruptive activity self-similarly multi-scaled? Astrophys. J. 718, 981987.CrossRefGoogle Scholar
Schmidt, J. B., Sands, B., Scofield, J., Gord, J. R. & Roy, S. 2017 Comparison of femtosecond- and nanosecond-two-photon-absorption laser-induced fluorescence (TALIF) of atomic oxygen in atmospheric-pressure plasmas. Plasma Sources Sci. Technol. 26 (5), 055004.CrossRefGoogle Scholar
Stenzel, R. L., Urrutia, J. M., Griskey, M. C. & Strohmaier, K. D. 2001 3D EMHD reconnection in a laboratory plasma. Earth, Planets, and Space 53, 553560.CrossRefGoogle Scholar
Stenzel, R. L., Urrutia, J. M., Griskey, M. C. & Strohmaier, K. D. 2002 A new laboratory experiment on magnetic reconnection. Phys. Plasmas 9, 19251930.CrossRefGoogle Scholar
Tang, V., Adams, M. L. & Rusnak, B. 2010 Dense plasma focus Z-pinches for high-gradient particle acceleration. IEEE Trans. Plasma Sci. 38, 719727.CrossRefGoogle Scholar
Thakur, S. C., Adriany, K., Gosselin, J. J., McKee, J., Scime, E. E., Sears, S. H. & Tynan, G. R. 2016 Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device. Rev. Sci. Instrum. 87 (11), 11E513.Google Scholar
Thurgood, J. O., Pontin, D. I. & McLaughlin, J. A. 2017 Three-dimensional oscillatory magnetic reconnection. Astrophys. J. 844, 2.CrossRefGoogle Scholar
Török, T., Aulanier, G., Schmieder, B., Reeves, K. K. & Golub, L. 2009 Fan-spine topology formation through two-step reconnection driven by twisted flux emergence. Astrophys. J. 704, 485495.CrossRefGoogle Scholar
Valdivia, J. A., Rogan, J., Munoz, V. & Toledo, B. 2006 Hysteresis provides self-organization in a plasma model. Space Sci. Rev. 122, 313320.CrossRefGoogle Scholar
Wendel, D. E. & Adrian, M. L. 2013 Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath. J. Geophys. Res. 118, 15711588.CrossRefGoogle Scholar
Willenborg, D. L. & Hendricks, C. D.1976 Design and construction of a dense plasma focus device, part 1. Tech. Rep. Google Scholar
Wyper, P. F., Antiochos, S. K. & DeVore, C. R. 2017 A universal model for solar eruptions. Nature 544, 452455.CrossRefGoogle ScholarPubMed
Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Bretz, N., Jobes, F., Ono, Y. & Perkins, F. 1997a Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4, 19361944.CrossRefGoogle Scholar
Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Ono, Y. & Perkins, F. 1997b Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 78, 31173120.CrossRefGoogle Scholar
Yamada, M., Yoo, J., Jara-Almonte, J., Ji, H., Kulsrud, R. M. & Myers, C. E. 2014 Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nat. Commun. 5, 4774.CrossRefGoogle Scholar
Ziemer, J. K. & Choueiri, E. Y. 2001 Scaling laws for electromagnetic pulsed plasma thrusters. Plasma Sources Sci. Technol. 10, 395405.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Toward laboratory torsional spine magnetic reconnection
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Toward laboratory torsional spine magnetic reconnection
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Toward laboratory torsional spine magnetic reconnection
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *