Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-25T21:39:15.461Z Has data issue: false hasContentIssue false

Simulation study of the influences of beryllium on the tokamak start-up process

Published online by Cambridge University Press:  25 October 2023

Yanli Peng
School of Science, East China University of Technology, Nanchang 330013, PR China
Yan Qiu
School of Science, East China University of Technology, Nanchang 330013, PR China
Shiqiu Zhao
School of Science, East China University of Technology, Nanchang 330013, PR China
Shali Yang*
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China
Email address for correspondence:


Tokamak start-up is strongly dependent on the state of the initial plasma formed during plasma breakdown. To acquire a better understanding of the process and to estimate the influence of the impurity of beryllium on the ohmic heating tokamak start-up process, one-dimensional particle-in-cell coupled with a Monte Carlo collision method has been developed. The main aim is to investigate the plasma performance under various amounts of beryllium with different discharge parameters. Tokamak breakdown with the impurity of beryllium in the ohmic heating strategy has been simulated. The simulation results show that with the impurity of beryllium, the increase of plasma density is suppressed compared with the case without beryllium. The breakdown time is delayed by the impurity. Moreover, the successful breakdown has a much higher requirement on discharge parameters with a low electric field operational scenario, since in the low electric field discharge the influence of beryllium impurity is greater. As the plasma density increases, the effect of beryllium impurity on plasma becomes more critical. It indicates that impurities cannot be neglected in the high plasma density.

Research Article
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Birdsall, C.K. & Langdon, A.B. 2005 Plasma Physics via Computer Simulation. Taylor & Francis.Google Scholar
Chen, Y., Wu, Z., Liu, X., Wang, D., Duan, Y., Gao, W., Zhang, L., Huang, J., Sun, Z., Jie, Y., et al. 2014 Investigation of Zeff and impurity behaviour in lithium coating experiments with full metallic first wall in HT-7 tokamak. Plasma Phys. Control. Fusion 57 (2), 025012.10.1088/0741-3335/57/2/025012CrossRefGoogle Scholar
Chew, J., Gibbon, P., Brömmel, D., Wauters, T., Gribov, Y. & de Vries, P. 2021 Three-dimensional first principles simulation of a hydrogen discharge. Plasma Phys. Control. Fusion 63 (4), 045012.10.1088/1361-6587/abdd75CrossRefGoogle Scholar
de Vries, P.C., Sips, A.C.C., Kim, H.T., Lomas, P.J., Maviglia, F., Albanese, R., Coffey, I., Joffrin, E., Lehnen, M., Manzanares, A., et al. 2013 Characterisation of plasma breakdown at JET with a carbon and ITER-like wall. Nucl. Fusion 53 (5), 053003.10.1088/0029-5515/53/5/053003CrossRefGoogle Scholar
Hammond, K.C., Raman, R. & Volpe, F.A. 2018 Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection. Nucl. Fusion 58 (1), 016013.CrossRefGoogle Scholar
Hawryluk, R.J. & Schmidt, J.A. 1976 Effects of low-z impurities during the start-up phase of a large tokamak. Nucl. Fusion 16 (5), 775.CrossRefGoogle Scholar
Holly, D.J., Prager, S.C., Shepard, D.A. & Sprott, J.C. 1981 Tokamak start-up with electron-cyclotron heating. Nucl. Fusion 21 (11), 1483.10.1088/0029-5515/21/11/015CrossRefGoogle Scholar
Jackson, G.L., Politzer, P.A., Humphreys, D.A., Casper, T.A., Hyatt, A.W., Leuer, J.A., Lohr, J., Luce, T.C., Van Zeeland, M.A. & Yu, J.H. 2010 Understanding and predicting the dynamics of tokamak discharges during startup and rampdown. Phys. Plasmas 17 (5), 056116.CrossRefGoogle Scholar
Jiang, W., Peng, Y., Zhang, Y. & Lapenta, G. 2016 Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions. Nucl. Fusion 56 (12), 126017.10.1088/0029-5515/56/12/126017CrossRefGoogle Scholar
Jiang, W., Zhang, Y. & Bogaerts, A. 2014 Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors. New J. Phys. 16 (11), 113036.CrossRefGoogle Scholar
Kajiwara, K., Ikeda, Y., Seki, M., Moriyama, S., Oikawa, T., Fujii, T. & JT-60 Team 2005 Electron cyclotron heating assisted startup in JT-60 U. Nucl. Fusion 45 (7), 694705.CrossRefGoogle Scholar
Kim, H.-T., Fundamenski, W., Sips, A.C.C. & EFDA-JET Contributors 2012 Enhancement of plasma burn-through simulation and validation in JET. Nucl. Fusion 52 (10), 103016.10.1088/0029-5515/52/10/103016CrossRefGoogle Scholar
Kim, H.-T., Sips, A.C.C. & EFDA-JET Contributors 2013 a Physics of plasma burn-through and DYON simulations for the JET ITER-like wall. Nucl. Fusion 53 (8), 083024.CrossRefGoogle Scholar
Kim, H.-T., Sips, A.C.C., de Vries, P.C. & JET-EFDA Contributors 2013 c Plasma burn-through simulations using the DYON code and predictions for ITER. Plasma Phys. Control. Fusion 55 (12), 124032.10.1088/0741-3335/55/12/124032CrossRefGoogle Scholar
Kim, H.-T., Sips, A.C.C. & Fundamenski, W. 2013 b PSI effects on plasma burn-through in JET. J. Nucl. Mater. 438, S1271S1274.CrossRefGoogle Scholar
Knoepfel, H. (Ed.) 1985 Tokamak Start-Up. Springer.Google Scholar
Krat, S., Mayer, M., Coad, J.P., Lungu, C.P., Heinola, K., Baron-Wiechec, A., Jepu, I. & Widdowson, A. 2021 Comparison of JET inner wall erosion in the first three ITER-like wall campaigns. Nucl. Mater. Energy 29, 101072.CrossRefGoogle Scholar
Lapenta, G., Brackbill, J.U. & Ricci, P. 2006 Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas. Phys. Plasmas 13 (5), 055904.CrossRefGoogle Scholar
Lazarus, E.A., Hyatt, A.W., Jackson, G.L. & Humphreys, D.A. 1998 Using a multipole expansion for startup in the DIII-D tokamak. Nucl. Fusion 38 (7), 1083.CrossRefGoogle Scholar
Lee, J., Kim, J., An, Y., Yoo, M.-G., Hwang, Y.S. & Na, Y.-S. 2017 Study on ECH-assisted start-up using trapped particle configuration in KSTAR and application to ITER. Nucl. Fusion 57 (12), 126033.CrossRefGoogle Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley-Interscience.CrossRefGoogle Scholar
Lloyd, B., Carolan, P.G. & Warrick, C.D. 1996 ECRH-assisted start-up in ITER. Plasma Phys. Control. Fusion 38 (9), 1627.CrossRefGoogle Scholar
Lloyd, B. & Edlington, T. 1986 Low voltage start-up in the CLEO tokamak using ECRH. Plasma Phys. Control. Fusion 28 (6), 909.CrossRefGoogle Scholar
Lloyd, B., Jackson, G.L., Taylor, T.S., Lazarus, E.A., Luce, T.C. & Prater, R. 1991 Low voltage Ohmic and electron cyclotron heating assisted startup in DIII-D. Nucl. Fusion 31 (11), 20312053.CrossRefGoogle Scholar
Mueller, D. 2013 The physics of tokamak start-up. Phys. Plasmas 20 (5), 058101.CrossRefGoogle Scholar
Ono, M., Bell, M.G., Bell, R.E., Bigelow, T., Bitter, M., Blanchard, W., Darrow, D.S., Fredrickson, E.D., Gates, D.A., Grisham, L.R., et al. 2001 Overview of the initial NSTX experimental results. Nucl. Fusion 41 (10), 1435.10.1088/0029-5515/41/10/311CrossRefGoogle Scholar
Peng, Y., Jiang, W., Innocenti, M.E., Zhang, Y., Hu, X., Zhuang, G. & Lapenta, G. 2018 On the breakdown modes and parameter space of ohmic tokamak start-up. J. Plasma Phys. 84 (5), 905840505.CrossRefGoogle Scholar
Phelps, A.V. & Petrovic, Z.L. 1999 Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons. Plasma Sources Sci. Technol. 8 (3), R21R44.CrossRefGoogle Scholar
Sand, F., Waelbroeck, F. & Waidmann, G. 1973 Pre-ionization and pre-heat conditions for a compact toroidal plasma experiment in the millitorr pressure range. Nucl. Fusion 13 (3), 373.CrossRefGoogle Scholar
Shinya, T., Takase, Y., Yajima, S., Moeller, C., Yamazaki, H., Tsujii, N., Yoshida, Y., Ejiri, A., Togashi, H., Toida, K., et al. 2017 Plasma current start-up experiments using outboard- and top-launch lower hybrid wave on the TST-2 spherical tokamak. Nucl. Fusion 57 (3), 036006.CrossRefGoogle Scholar
Vahedi, V. & Surendra, M. 1995 A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87 (1), 179198.CrossRefGoogle Scholar
Valovi, M. 1987 Convective losses during current initiation in tokamaks. Nucl. Fusion 27 (4), 599603.CrossRefGoogle Scholar
Wróblewska, M., Blanchet, D., Lyoussi, A., Blaise, P., Jagielski, J., Marcinkowska, Z., Boettcher, A., Machtyl, T., Januchta, M. & Wilczek, I. 2021 A review and analysis of the state of the art on beryllium poisoning in research reactors. Ann. Nucl. Energy 163, 108540.CrossRefGoogle Scholar
Wu, H., Zhou, Y., Gao, J., Peng, Y., Wang, Z. & Jiang, W. 2021 Electrical breakdown in dual-frequency capacitively coupled plasma: a collective simulation. Plasma Sources Sci. Technol. 30 (6), 065029.10.1088/1361-6595/abff74CrossRefGoogle Scholar
Yang, S., Innocenti, M.E., Zhang, Y., Yi, L. & Jiang, W. 2017 a Heating mechanisms of magnetized capacitively coupled argon plasmas excited by tailored voltage waveforms. J. Vac. Sci. Technol. A 35 (6), 061311.CrossRefGoogle Scholar
Yang, S.L., Zhang, Y., Wang, H.Y., Cui, J.W. & Jiang, W. 2017 b Magnetical asymmetric effect in geometrically and electrically symmetric capacitively coupled plasma. Plasma Process. Polym. 14 (12), 1700087.CrossRefGoogle Scholar
Yoo, M.-G., Lee, J., Kim, Y.-G., Kim, J., Maviglia, F., Sips, A.C.C., Kim, H.-T., Hahm, T.S., Hwang, Y.-S., Lee, H.J., et al. 2018 Evidence of a turbulent ExB mixing avalanche mechanism of gas breakdown in strongly magnetized systems. Nat. Commun. 9 (1).CrossRefGoogle ScholarPubMed
Yoo, M.-G., Lee, J., Kim, Y.-G. & Na, Y.-S. 2017 Development of 2D implicit particle simulation code for ohmic breakdown physics in a tokamak. Comput. Phys. Commun. 221, 143159.CrossRefGoogle Scholar
Yoshinaga, T., Uchida, M., Tanaka, H. & Maekawa, T. 2007 A current profile model for magnetic analysis of the start-up phase of toroidal plasmas driven by electron cyclotron heating and current drive. Nucl. Fusion 47 (3), 210216.CrossRefGoogle Scholar
Yoshino, R. & Seki, M. 1997 Low electric field plasma-current start-up in JT-60 U. Plasma Phys. Control. Fusion 39 (1), 205.CrossRefGoogle Scholar
Zatsarinny, O. & Bartschat, K. 2004 B-spline Breit–Pauli R-matrix calculations for electron collisions with argon atoms. J. Phys. B 37 (23), 46934706.CrossRefGoogle Scholar
Zhang, Y., Jiang, W. & Bogaerts, A. 2014 Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure. J. Phys. D: Appl. Phys. 47 (43), 435201.CrossRefGoogle Scholar