Hostname: page-component-546b4f848f-gfk6d Total loading time: 0 Render date: 2023-06-02T10:07:51.545Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Langmuir turbulence as a critical phenomenon. Part 2. Application of the dynamical renormalization group method

Published online by Cambridge University Press:  13 March 2009

Guy Pelletier
Physique des Milieux lonisés, Université Scientifique et Médicale de Grenoble, B.P. 53 X-38041 Grenoble Cedex, France


In part 1 of this work, we have found a ‘critical curve’ which separates the unstable self-modulation regime from the stable one for a Gibbs ensemble of interacting modes. On this critical curve, the correlation length diverges and scaling invariance occurs; in particular, the Langmuir correlation spectrum is proportional to k-2. Simple laws have been derived for the neighbourhood of the critical curve. However these derivations are based on equilibrium statistical mechanics and the results are obtained with a Hartree approximation which has not been checked. So, in this second part, we elaborate a direct statistical theory of Zakharov's equations completed by excitation sources and dissipations. In spite of infra-red divergences and a large fluctuation level, large-scale properties are derived in the neighbourhood of the critical curve, by the renormalization group method. The laws obtained in part 1 are slightly modified; however, the same spectrum is obtained.

Research Article
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Bardwell, S. & Golodman, M. 1976 Astrophys. J. 209, 912.CrossRefGoogle Scholar
Dubois, D., Rose, H. & Goldman, M. 1979 Proc XIVth ICPIG Grenoble, Suppi. J. de Physique, C7, 601.Google Scholar
Forster, D., Nelson, D. & Stephen, M. 1977 Phys. Rev. A 16, 732.CrossRefGoogle Scholar
Galeev, A. A., Sagdeev, R. Z., Shapiro, V. D. & Shevchenko, V. I. 1976 JETP Lett. 24, 21.Google Scholar
Halperin, B., Hohenberg, P. & Siggia, E. 1976 Phys. Rev. B 13, 1299.CrossRefGoogle Scholar
Khakimov, F. Kh. & Tsytovich, V. N. 1975 Soviet Phye. JETP, 41, 47.Google Scholar
Ma, S. K. 1976 Modern Theory of Critical Phenomena. Benjamin.Google Scholar
Ma, S. K. & Mazenko, G. 1975 Phye. Rev. B 11, 4077.CrossRefGoogle Scholar
Martin, P. C., Siggla, E. D. & Rose, H. A. 1973 Phye. Rev. A 8, 423.CrossRefGoogle Scholar
Pelletier, G. 1979a Proc. XI Vth IOPIG Grenoble, Suppi. J. de Phyeique, C7, 657.Google Scholar
Pelletier, G. 1979b C.R. Acad. Scienees Paris, 289 B, 159.Google Scholar
Pelletier, G. 1980 J. Plasma Phys. 24, 287.CrossRefGoogle Scholar
Pouquet, A., Fournier, J. D. & Sulem, P. L. 1978 J. de Physique Lettres, 39, 199.CrossRefGoogle Scholar
Toulouse, G. & Pfeuty, P. 1975 Groupe de Renormalisation. Presse Universitaire de Grenoble.Google Scholar
Wilson, K. 1972 Phys. Rev. Leit. 28, 548.CrossRefGoogle Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP, 35, 908.Google Scholar