Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-03T19:06:46.468Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Ion diffusion and acceleration in plasma turbulence

Published online by Cambridge University Press:  05 November 2018

F. Pecora*
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
S. Servidio
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
A. Greco
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
W. H. Matthaeus
Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
D. Burgess
School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
C. T. Haynes
School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
V. Carbone
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
P. Veltri
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
Email address for correspondence:


Particle transport, acceleration and energization are phenomena of major importance for both space and laboratory plasmas. Despite years of study, an accurate theoretical description of these effects is still lacking. Validating models with self-consistent, kinetic simulations represents today a new challenge for the description of weakly collisional, turbulent plasmas. We perform simulations of steady state turbulence in the 2.5-dimensional approximation (three-dimensional fields that depend only on two-dimensional spatial directions). The chosen plasma parameters allow to span different systems, going from the solar corona to the solar wind, from the Earth’s magnetosheath to confinement devices. To describe the ion diffusion we adapted the nonlinear guiding centre (NLGC) theory to the two-dimensional case. Finally, we investigated the local influence of coherent structures on particle energization and acceleration: current sheets play an important role if the ions’ Larmor radii are of the order of the current sheet’s size. This resonance-like process leads to the violation of the magnetic moment conservation, eventually enhancing the velocity-space diffusion.

Research Article
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ambrosiano, J., Matthaeus, W. H., Goldstein, M. L. & Plante, D. 1988 Test particle acceleration in turbulent reconnecting magnetic fields. J. Geophys. Res. 93, 1438314400.Google Scholar
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. & Reme, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94 (21), 215002.Google Scholar
Bieber, J. W. & Matthaeus, W. H. 1997 Perpendicular diffusion and drift at intermediate cosmic-ray energies. Astrophys. J. 485, 655659.Google Scholar
Bieber, J. W., Matthaeus, W. H., Shalchi, A. & Qin, G. 2004 Nonlinear guiding center theory of perpendicular diffusion: general properties and comparison with observation. Geophys. Res. Lett. 31 (10), L10805.Google Scholar
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M. & Zelenyi, L. M. 2012 Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49102.Google Scholar
Bruno, R. & Carbone, V.(Eds) 2016 Turbulence in the Solar Wind, Lecture Notes in Physics, vol. 928. Springer.Google Scholar
Cadavid, A. C., Lawrence, J. K., Christian, D. J., Jess, D. B. & Nigro, G. 2014 Heating mechanisms for intermittent loops in active region cores from aia/sdo euv observations. Astrophys. J. 795 (1), 48.Google Scholar
Cargill, P. J., Vlahos, L., Baumann, G., Drake, J. F. & Nordlund, Å. 2012 Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. 173, 223245.Google Scholar
Cargill, P. J., Vlahos, L., Turkmani, R., Galsgaard, K. & Isliker, H. 2006 Particle acceleration in a three-dimensional model of reconnecting coronal magnetic fields. Space Sci. Rev. 124, 249259.Google Scholar
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. & Germaschewski, K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503515.Google Scholar
Chandrasekhar, S. 1943 Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1), 1.Google Scholar
Chen, S. & Kraichnan, R. H. 1989 Sweeping decorrelation in isotropic turbulence. Phys. Fluids A 1 (12), 20192024.Google Scholar
Dalena, S., Greco, A., Rappazzo, A. F., Mace, R. L. & Matthaeus, W. H. 2012 Magnetic moment nonconservation in magnetohydrodynamic turbulence models. Phys. Rev. E 86, 016402.Google Scholar
Dmitruk, P., Matthaeus, W. H. & Seenu, N. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.Google Scholar
Drake, J. F., Opher, M., Swisdak, M. & Chamoun, J. N. 2010 A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963974.Google Scholar
Drake, J. F., Swisdak, M., Che, H. & Shay, M. A. 2006 Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553556.Google Scholar
Franci, L., Landi, S., Matteini, L., Verdini, A. & Hellinger, P. 2015 High-resolution hybrid simulations of kinetic plasma turbulence at proton scales. Astrophys. J. 812, 21.Google Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.Google Scholar
Gosling, J. T. 2010 Magnetic reconnection in the solar wind: an update. Twelfth Intl Solar Wind Conf. 1216, 188193.Google Scholar
Greco, A., Matthaeus, W. H., Servidio, S., Chuychai, P. & Dmitruk, P. 2009a Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 691, L111L114.Google Scholar
Greco, A., Matthaeus, W. H., Servidio, S. & Dmitruk, P. 2009b Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? Phys. Rev. E 80 (4), 046401.Google Scholar
Green, M. S. 1951 Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19, 10361046.Google Scholar
Hauff, T., Pueschel, M. J., Dannert, T. & Jenko, F. 2009 Electrostatic and magnetic transport of energetic ions in turbulent plasmas. Phys. Rev. Lett. 102 (7), 075004.Google Scholar
Haynes, C. T., Burgess, D. & Camporeale, E. 2014 Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence. Astrophys. J. 783, 38.Google Scholar
Hoshino, M., Mukai, T., Terasawa, T. & Shinohara, I. 2001 Superthermal electron acceleration in magnetic reconnection. J. Geophys. Res. 106, 25972.Google Scholar
Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A. & Tatsuno, T. 2008 Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100 (6), 065004.Google Scholar
Hussein, M. & Shalchi, A. 2016 Simulations of energetic particles interacting with dynamical magnetic turbulence. Astrophys. J. 817 (2), 136.Google Scholar
Jokipii, J. R. 1966 Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480.Google Scholar
Jokipii, J. R. & Parker, E. N. 1969 Stochastic aspects of magnetic lines of force with application to cosmic-ray propagation. Astrophys. J. 155, 777.Google Scholar
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301305.Google Scholar
Kubo, R. 1957 Statistical-mechanical theory of irreversible processes. I. J. Phys. Soc. Japan 12, 570586.Google Scholar
Lazarian, A. & Opher, M. 2009 A model of acceleration of anomalous cosmic rays by reconnection in the heliosheath. Astrophys. J. 703, 821.Google Scholar
Lepreti, F., Carbone, V., Abramenko, V. I., Yurchyshyn, V., Goode, P. R., Capparelli, V. & Vecchio, A. 2012 Turbulent pair dispersion of photospheric bright points. Astrophys. J. 759, L17.Google Scholar
Luo, H., Kronberg, E. A., Nykyri, K., Trattner, K. J., Daly, P. W., Chen, G. X., Du, A. M. & Ge, Y. S. 2017 Imf dependence of energetic oxygen and hydrogen ion distributions in the near-earth magnetosphere. J. Geophys. Res. 122 (5), 51685180.Google Scholar
Matthaeus, W. H., Ambrosiano, J. J. & Goldstein, M. L. 1984 Particle-acceleration by turbulent magnetohydrodynamic reconnection. Phys. Rev. Lett. 53, 14491452.Google Scholar
Matthaeus, W. H., Gray, P. C., Pontius, D. H. Jr & Bieber, J. W. 1995 Spatial structure and field-line diffusion in transverse magnetic turbulence. Phys. Rev. Lett. 75, 21362139.Google Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986 Turbulent magnetic reconnection. Phys. Fluids 29, 25132534.Google Scholar
Matthaeus, W. H. & Montgomery, D. 1980 Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. N. Y. Acad. Sci. 357, 203.Google Scholar
Matthaeus, W. H., Qin, G., Bieber, J. W. & Zank, G. P. 2003 Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett. 590 (1), L53.Google Scholar
Matthaeus, W. H., Servidio, S. & Dmitruk, P. 2008 Comment on ‘Kinetic simulations of magnetized turbulence in astrophysical plasmas’. Phys. Rev. Lett. 101 (14), 149501.Google Scholar
Miller, J. A., Guessoum, N. & Ramaty, R. 1990 Stochastic Fermi acceleration in solar flares. Astrophys. J. 361, 701708.Google Scholar
Miller, J. A. & Roberts, D. A. 1995 Stochastic proton acceleration by cascading Alfven waves in impulsive solar flares. Astrophys. J. 452, 912.Google Scholar
Nelkin, M. & Tabor, M. 1990 Time correlations and random sweeping in isotropic turbulence. Phys. Fluids A 2 (1), 8183.Google Scholar
Oka, M., Phan, T.-D., Krucker, S., Fujimoto, M. & Shinohara, I. 2010 Electron acceleration by multi-island coalescence. Astrophys. J. 714, 915926.Google Scholar
Parker, E. N. 1957 Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509520.Google Scholar
Perri, S., Servidio, S., Vaivads, A. & Valentini, F. 2017 Numerical study on the validity of the Taylor hypothesis in space plasmas. Astrophys. J. Suppl. 231, 4.Google Scholar
Rappazzo, A. F., Matthaeus, W. H., Ruffolo, D., Velli, M. & Servidio, S. 2017 Coronal heating topology: the interplay of current sheets and magnetic field lines. Astrophys. J. 844 (1), 87.Google Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
le Roux, J. A., Zank, G. P., Webb, G. M. & Khabarova, O. 2015 A kinetic transport theory for particle acceleration and transport in regions of multiple contracting and reconnecting inertial-scale flux ropes. Astrophys. J. 801, 112.Google Scholar
Ruffolo, D., Matthaeus, W. H. & Chuychai, P. 2003 Trapping of solar energetic particles by the small-scale topology of solar wind turbulence. Astrophys. J. 597, L169L172.Google Scholar
Ruffolo, D., Matthaeus, W. H. & Chuychai, P. 2004 Separation of magnetic field lines in two-component turbulence. Astrophys. J. 614, 420434.Google Scholar
Ruffolo, D., Pianpanit, T., Matthaeus, W. H. & Chuychai, P. 2012 Random ballistic interpretation of nonlinear guiding center theory. Astrophys. J. Lett. 747, L34.Google Scholar
Servidio, S., Carbone, V., Dmitruk, P. & Matthaeus, W. H. 2011a Time decorrelation in isotropic magnetohydrodynamic turbulence. Europhys. Lett. 96, 55003.Google Scholar
Servidio, S., Greco, A., Matthaeus, W. H., Osman, K. T. & Dmitruk, P. 2011b Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. 116, A09102.Google Scholar
Servidio, S., Haynes, C. T., Matthaeus, W. H., Burgess, D., Carbone, V. & Veltri, P. 2016 Explosive particle dispersion in plasma turbulence. Phys. Rev. Lett. 117, 095101.Google Scholar
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. & Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102 (11), 115003.Google Scholar
Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W. H. & Veltri, P. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81 (1), 325810107.Google Scholar
Shalchi, A. 2015 Perpendicular diffusion of energetic particles in collisionless plasmas. Phys. Plasmas 22 (1), 010704.Google Scholar
Shalchi, A., Bieber, J. W. & Matthaeus, W. H. 2004 Nonlinear guiding center theory of perpendicular diffusion in dynamical turbulence. Astrophys. J. 615 (2), 805.Google Scholar
Shalchi, A. & Dosch, A. 2008 Nonlinear guiding center theory of perpendicular diffusion: derivation from the Newton–Lorentz equation. Astrophys. J. 685, 971975.Google Scholar
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525547.Google Scholar
Subedi, P., Sonsrettee, W., Blasi, P., Ruffolo, D., Matthaeus, W. H., Montgomery, D., Chuychai, P., Dmitruk, P., Wan, M., Parashar, T. N. et al. 2017 Charged particle diffusion in isotropic random magnetic fields. Astrophys. J. 837, 140.Google Scholar
Taylor, G. I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196.Google Scholar
Taylor, J. B. & McNamara, B. 1971 Plasma diffusion in two dimensions. Phys. Fluids 14, 14921499.Google Scholar
Tessein, J. A., Matthaeus, W. H., Wan, M., Osman, K. T., Ruffolo, D. & Giacalone, J. 2013 Association of suprathermal particles with coherent structures and shocks. Astrophys. J. 776, L8.Google Scholar
Zank, G. P., le Roux, J. A., Webb, G. M., Dosch, A. & Khabarova, O. 2014 Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 797, 28.Google Scholar