Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T01:11:27.306Z Has data issue: false hasContentIssue false

Instability of energetic ion beam injection in tokamaks

Published online by Cambridge University Press:  13 March 2009

John D. Gaffey Jr
Affiliation:
Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742, U.S.A. and Institute de Fisica, Universidade Federal do Rio Grande do Sul,†90.000 Porto Alegre, Brazil

Abstract

There is considerable interest in the use of energetic ion beams to heat magnetically confined plasmas to ignition temperature. An uncertainty in this heating technique is the possible role of instabilities driven by the fast ion beams. For this reason, we have investigated homogeneous plasma modes, including the cross field ion-ion wave and the beam ion-acoustic wave, as well as the ordinary electromagnetic mode, which taps the free energy associated with the beam anisotropy. The growth rates of these modes are calculated and the stability thresholds are compared to parameters for both present injection experiments and the proposed TFTR device.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. 1966 Handbook of Mathematical Functions (5th printing). U.S. Government Printing Office.CrossRefGoogle Scholar
Baldwin, D. E., Bernstein, I. B. & Weenick, M. H. P. 1969 Advances in Plasma Physics, vol. 3 (ed. Simon, A. & Thompson, W. B.), p. 32. Interacience.Google Scholar
Callen, J. D. & Guest, G. E. 1973 Nucl. Fusion, 13, 87.CrossRefGoogle Scholar
Cheng, M. P. H. 1975 Phys. Rev. Lett. 35, 285.CrossRefGoogle Scholar
Cordey, J. G. & Houghton, M. J. 1973 Nucl. Fusion, 13, 215.CrossRefGoogle Scholar
Erdelyi, A. 1954 Higher Transcendental Functions, vol. II. McGraw-Hill.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, B. D. & Wong, A. Y. 1966 Phys. Fluids, 9, 1084.CrossRefGoogle Scholar
Gaffey, J. D. 1974 Ph.D. dissertation, University of California, San Diego.Google Scholar
Gaffey, J. D. 1975 J. Plasma Phys. 15, 563.CrossRefGoogle Scholar
Gaffey, J. D. 1976 J. Plasma Phys. 16, 149.CrossRefGoogle Scholar
Gaffey, J. D. & Thompson, W. B. 1974 Proc. Am. Phys. Soc. 19, 896.Google Scholar
Hamasaki, S. 1968 Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory, McGraw-Hill.Google Scholar
McBride, J. B. & Ott, E. 1972 Phys. Lett. 39 A, 363.CrossRefGoogle Scholar
McBride, J. B., Ott, E., Boris, J. P., & Orens, J. H. 1972 Phys. Fluids, 15, 2367.CrossRefGoogle Scholar
Papadopoulos, K., Davidson, R. C., Dawson, J. M., Haber, I., Hammer, D. A., Krall, N. A. & Shanny, R. 1971 Phys. Fluids, 14, 849.CrossRefGoogle Scholar
Spitzer, L. 1962 The Physics of Fully Ionized Gases. Interscience.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stix, T. H. 1973 Phys. Fluids, 16, 1922.CrossRefGoogle Scholar