Hostname: page-component-594f858ff7-hd6rl Total loading time: 0 Render date: 2023-06-10T05:28:47.780Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Derivation and properties of a Balescu–Lenard like equation for stationary plasma turbulence in the weak-coupling approximation

Published online by Cambridge University Press:  13 March 2009

Guy Pelletier
Laboratoire do Physique des Plasmas, Equipo do Recherche Associée au CNRS, Université do Grenoble I
Claude Pomot
Laboratoire do Physique des Plasmas, Equipo do Recherche Associée au CNRS, Université do Grenoble I


In this paper, we derive a kinetic equation and discuss its validity for a stationary turbulent plasma. We use, for this purpose, the Dupree— Weinstock model in the weak-coupling approximation, and take into account ballistic streams. Frictional effects appear, in addition to the velocity diffusion. The diffusion causes a resonance broadening, the friction causes a frequency shift. Our model is a generalization of the dressed test particle model, and leads to a kinetic equation formally similar to Balescu— Lenard' s. A comparison between our model and the Dupree ‘clump’ theory is developed. Physical quantities are conserved, the H theorem is satisfied; but the asymptotic solution is not necessarily a Maxwellian distribution function.

Research Article
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Dupree, T. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Dupree, T. 1972 Phys. Fluids, 15, 334.CrossRefGoogle Scholar
Hinton, F. L. & Oberman, C. 1968 Phys. Fluids, 11, 1982.CrossRefGoogle Scholar
Krall, N. & Tidman, D. 1969 Phys. Fluids, 12, 607.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1975 J. Plasma Phys. 13, 385.CrossRefGoogle Scholar
Montgomery, D. & Tidman, D. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Rogister, A. & Oberman, C. 1968 J. Plasma Phys. 2, 33.CrossRefGoogle Scholar
Rostoker, N. 1964 Phys. Fluids, 7, 479.CrossRefGoogle Scholar
Sleeper, A., Weinstock, J. & Bezzerides, B. 1973 Phys. Fluids, 16, 1508.CrossRefGoogle Scholar
Thomson, J. J. & Benford, G. 1973 J. Math. Phys. 14, 531.CrossRefGoogle Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar
Yosida, K. 1965 Functional Analysis. Springer.Google Scholar