Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-rxvp8 Total loading time: 0.187 Render date: 2021-06-17T05:45:05.848Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Computational methods for plasma fluid models

Published online by Cambridge University Press:  19 September 2016

G. Fuhr
Affiliation:
Aix Marseille Univ, CNRS, PIIM, Faculte de Saint Jerome, C631, 13397 Marseille Cedex 20, France
P. Beyer
Affiliation:
Aix Marseille Univ, CNRS, PIIM, Faculte de Saint Jerome, C631, 13397 Marseille Cedex 20, France
S. Benkadda
Affiliation:
Aix Marseille Univ, CNRS, PIIM, Faculte de Saint Jerome, C631, 13397 Marseille Cedex 20, France
Corresponding

Abstract

Challenges in plasma physics are wide. Investigation and advances are made in experiments but at the same time, to understand and to reach the experimental limits, accurate numerical simulations are required from systems of nonlinear equations. The numerical challenges of solving the associated fluid equations are discussed in this paper. Using the framework of the finite difference discretization, the most widely used methods for the problems linked to the diffusion or advection operators are presented.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Amdahl, G. M. 1967 Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pp. 483485. ACM.CrossRefGoogle Scholar
Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1), 119143.CrossRefGoogle Scholar
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D. et al. 2016 PETSc webpage. http://www.mcs.anl.gov/petsc.Google Scholar
Beyer, P., Benkadda, S. & Garbet, X. 2000 Proper orthogonal decomposition and galerkin projection for a three-dimensional plasma dynamical system. Phys. Rev. E 61 (1), 813823.Google ScholarPubMed
Biskamp, D. 1993 Nonlinear Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Boris, J. P. & Book, D. L. 1997 Flux-corrected transport. J. Comput. Phys. 135 (2), 172186.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205311.Google Scholar
Brock, D. & Horton, W. 1982 Toroidal drift-wave fluctuations driven by ion pressure gradients. Plasma Phys. 24 (3), 271.CrossRefGoogle Scholar
Butcher, J. C. 2008 Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics. Springer.CrossRefGoogle Scholar
Chapman, B., Jost, G. & Van der Pas, R. 2007 Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press.Google Scholar
Coiffier, J. 2012 Fundamentals of Numerical Weather Prediction. Cambridge University Press.Google Scholar
Courant, R., Friedrichs, K. & Lewy, H. 1928 über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100 (1), 3274.CrossRefGoogle Scholar
Courant, R., Isaacson, E. & Rees, M. 1952 On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Maths 5 (3), 243255.CrossRefGoogle Scholar
Crouseilles, N., Kuhn, M. & Latu, G. 2015 Comparison of numerical solvers for anisotropic diffusion equations arising in plasma physics. J. Sci. Comput. 65 (3), 10911128.CrossRefGoogle Scholar
D’haeseleer, W. D. 1991 Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Structure, Springer Series in Computational Physics. Springer.CrossRefGoogle Scholar
Durran, D. R. 1999 Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Durran, D. R. 2010 Numerical Methods for Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Ferszinger, H. 2002 Computational Methods for Fluid Dynamics. Springer.Google Scholar
FFTW 2015 FFTW webpage. http://www.fftw.org/.Google Scholar
Freidberg, J. P. 2007 Plasma Physics and Fusion Energy. Cambridge University Press.CrossRefGoogle Scholar
Godunov, S. K. 1959 Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271300.Google Scholar
Griffiths, D. F. 2010 Numerical Methods for Ordinary Differential Equations. Springer.CrossRefGoogle Scholar
Gustafson, J. L. 1988 Reevaluating Amdahl’s law. Commun. ACM 31 (5), 532533.CrossRefGoogle Scholar
Hairer, E. 2006 Geometric Numerical Integration. Springer.Google Scholar
Hirsch, C. 2007 Numerical Computation of Internal and External Flows, Volume 1, Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann.Google Scholar
Horton, W. & Estes, R. D. 1980 Fluid simulation of ion pressure gradient driven drift modes. Plasma Phys. 22 (7), 663.CrossRefGoogle Scholar
Jardin, S. 2010 Computational Methods in Plasma Physics. CRC Press.CrossRefGoogle Scholar
Jardin, S. 2011 Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas. J. Comput. Phys. 231, 822838.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.CrossRefGoogle Scholar
Kuhn, M., Latu, G., Genaud, S. & Crouseilles, N. 2013 Optimization and parallelization of emerged on shared memory architecture. In Proceedings of the 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’13, pp. 503510. IEEE Computer Society.CrossRefGoogle Scholar
Lax, P. & Wendroff, B. 1960 Systems of conservation laws. Commun. Pure Appl. Maths 13 (2), 217237.CrossRefGoogle Scholar
Leveque, R. J. 1992 Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhäuser.CrossRefGoogle Scholar
Leveque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
Lomax, H., Pulliam, T. H. & Zingg, D. W. 2001 Fundamentals of Computational Fluid Dynamics. Springer.CrossRefGoogle Scholar
Message Passing Interface Forum2015 MPI: A Message-Passing Interface Standard Version 3.1. High Performance Computing Center Stuttgart (HLRS).Google Scholar
MUMPS2015 MUMPS webpage. http://mumps-solver.org/.Google Scholar
Naulin, V. & Nielsen, A. H. 2003 Accuracy of spectral and finite difference schemes in 2d advection problems. SIAM J. Sci. Comput. 25 (1), 104126.CrossRefGoogle Scholar
OpenMP2015 OpenMP tutorial from LLNL. https://computing.llnl.gov/tutorials/openMP/.Google Scholar
Patterson, G. S. & Orszag, S. A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.CrossRefGoogle Scholar
Platzman, G. W. 1961 An approximation to the product of discrete functions. J. Meteorol. 18 (1), 3137.2.0.CO;2>CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
Rosen, J. S.1967 The Runge–Kutta equations by quadrature methods. NASA Tech. Rep. TR-R-275.Google Scholar
Schneider, K., Kolomenskiy, D. & Deriaz, E. 2013 Is the CFL Condition Sufficient? Some Remarks. pp. 139146. Birkhäuser Boston.Google Scholar
Scott, B. D. 1997 Three-dimensional computation of drift Alfvén turbulence. Plasma Phys. Control. Fusion 39 (10), 1635.CrossRefGoogle Scholar
Shu, C.-W. 1998 Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. pp. 325432. Springer.Google Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Smith, G. D. 1978 Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon.Google Scholar
Suresh, A. & Huynh, H. T. 1997 Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136 (1), 8399.CrossRefGoogle Scholar
Wesson, J. 1997 Tokamaks, 2nd edn. Clarendon.Google Scholar
Zhengfu, X. & Shu, C.-W. 2005 Anti-diffusive flux corrections for high order finite difference WENO schemes. J. Comput. Phys. 205 (2), 458485.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Computational methods for plasma fluid models
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Computational methods for plasma fluid models
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Computational methods for plasma fluid models
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *