Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T16:44:32.777Z Has data issue: false hasContentIssue false

Compton and Raman free electron laser stability properties for a warm electron beam propagating through a helical magnetic wiggler

Published online by Cambridge University Press:  13 March 2009

John A. Davies
Affiliation:
Clark University, Worcester, MA 01610
Ronald C. Davidson
Affiliation:
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139
George L. Johnston
Affiliation:
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

This paper gives an extensive analytical and numerical characterization of the growth-rate curves (imaginary frequency versus wavenumber) derived from the free electron laser dispersion relation for a warm relativistic electron beam propagating through a constant-amplitude helical magnetic wiggler field. The electron beam is treated as infinite in transverse extent. A detailed mathematical analysis is given of the exact dispersion relation and its Compton approximation for the case of a water-bag equilibrium distribution function (uniform distribution in axial momentum pz). Applicability of the water-bag results to the case of a Gaussian equilibrium distribution in pz is tested numerically. One result of the water-bag analysis is a set of validity conditions for the Compton approximation. Numerical and analytical results indicate that these conditions are applicable to the Gaussian case far outside the parameter range where the individual water-bag and corresponding Gaussian growth rate curves agree.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davidson, R. C. & Uhm, H. S. 1980 Phys. Fluids, 23, 2076.CrossRefGoogle Scholar
Davies, J. A., Davidson, R. C. & Johnston, G. L. 1985 J. Plasma Phys. 33, 387.CrossRefGoogle Scholar
Dimos, A. M. & Davidson, R. C. 1985 Phys. Fluids, 28, 677.CrossRefGoogle Scholar
Elias, G. R., Fairbank, W. M., Madey, J. M., Schwettman, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.CrossRefGoogle Scholar
Fajans, J. & Bekefi, G. 1986 Phys. Fluids, 29, 3461.CrossRefGoogle Scholar
Kwan, T., Dawson, J. M. & Lin, A. T. 1977 Phys. Fluids, 20, 581.CrossRefGoogle Scholar
Kroll, N. M. & McMullin, W. A. 1978 Phys. Rev. A, 17, 300.CrossRefGoogle Scholar
Orzechowski, T. J., Anderson, B., Fawley, W. M., Prosnitz, D., Scharlemann, E. T., Yarema, S., Hopkins, D., Paul, A. C., Sessler, A. M. & Wurtele, J. 1985 Phys. Rev. Lett. 54, 889.CrossRefGoogle Scholar