Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-c2bf7 Total loading time: 0.199 Render date: 2021-05-15T03:39:57.811Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence

Published online by Cambridge University Press:  17 August 2010

R. M. G. M. TRINES
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
J. T. MENDONÇA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
P. K. SHUKLA
Affiliation:
Ruhr-Universität Bochum, Bochum, Germany
C. D. MURPHY
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
M. W. DUNLOP
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
J. A. DAVIES
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
R. BAMFORD
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
A. VAIVADS
Affiliation:
Swedish Institute for Space Physics, Uppsala, Sweden
P. A. NORREYS
Affiliation:
Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX, UK (raoul.trines@stfc.ac.uk)
Corresponding
E-mail address:

Abstract

Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory, New York: Benjamin.Google Scholar
[2]Besieris, I. M. and Tappert, F. D. 1973 J. Math. Phys. 14, 704.CrossRefGoogle Scholar
[3]Wigner, E. 1932 Phys. Rev. 40, 749.CrossRefGoogle Scholar
[4]Moyal, J. E. 1949 Proc. Camb. Phil. Soc. 45, 99.CrossRefGoogle Scholar
[5]Peierls, R. E. 1995 Quqntum Theory of Solids. Oxford: Oxford University Press.Google Scholar
[6]McDonald, S. W. 1988 Phys. Rep. 158, 337.CrossRefGoogle Scholar
[7]Kadomtsev, B. B. 1965 Plasma Turbulence, London: Academic Press.Google Scholar
[8]Bingham, R., Mendonça, J. T. and Dawson, J. M. 1997 Phys. Rev. Lett. 78, 247.CrossRefGoogle Scholar
[9]Silva, L. O., Mori, W. B., Bingham, R., Dawson, J. M., Antonsen, T. M. Jr. and Mora, P. 2000 IEEE Trans. Plas. Sci. 28, 1202.CrossRefGoogle Scholar
[10]Tappert, F. D., Cole, W. J., Hardin, R. H. and Zabusky, N. J. 1971 In: Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, 1970, Washington, D.C. (ed. Boris, J. and Shanny, R.). Arlington, VA: Office of Naval Research, p. 196.Google Scholar
[11]Dawson, J. M. 1983 Rev. Mod. Phys. 55, 403447.CrossRefGoogle Scholar
[12]Birdsall, C. K. and Langdon, A. B. 1991 Plasma Physics via Computer Simulation. Bristol and Philadelphia: Institute of Physics Publishing.CrossRefGoogle Scholar
[13]Bingham, R., Bethe, H. A., Dawson, J. M., Shukla, P. K., and Su, J. J. 1996 Phys. Lett. A 220, 107.CrossRefGoogle Scholar
[14]Silva, L. O. and Mendonça, J. T. 1998 Phys. Rev. E 57, 3423.Google Scholar
[15]Mendonça, J. T., Bingham, R. and Shukla, P. K. 2003 Phys. Rev. E 68, 0164406.CrossRefGoogle Scholar
[16]Whitham, G. B. 1974 Linear and Nonlinear Waves, New York: John Wiley & Sons.Google Scholar
[17]Mattor, N. and Diamond, P. H. 1994 Phys. Plasmas 1, 4002.CrossRefGoogle Scholar
[18]Mendonça, J. T. 2001 Theory of Photon Acceleration, Series in Plasma Physics. Bristol and Philadelphia: Institute of Physics Publishing.CrossRefGoogle Scholar
[19]Silva, L. O., Bingham, R., Dawson, J. M. and Mori, W. B. 1999 Phys. Rev. E 59, 2273.Google Scholar
[20]Hasegawa, A. and Mima, K. 1978 Phys. Fluids 21, 87.CrossRefGoogle Scholar
[21]Hasegawa, A. and Wakatani, M. 1983 Phys. Rev. Lett. 50, 682.CrossRefGoogle Scholar
[22]Horton, W. and Hasegawa, A. 1994 Chaos 4, 227.CrossRefGoogle Scholar
[23]Smolyakov, A. I., Diamond, P. H. and Shevchenko, V. I. 2000 Phys. Plasmas 7, 1349.CrossRefGoogle Scholar
[24]Trines, R., Bingham, R., Dunlop, M. W., Vaivads, A., Davies, J. A., Mendonça, J. T., Silva, L. O. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 205006.CrossRefGoogle Scholar
[25]Kirk, A. et al. (MAST Team) 2004 Phys. Rev. Lett. 92, 245002; Kirk, A. et al. and the MAST team 2005 Plasma Phys. Control. Fusion 47, 315.CrossRefGoogle Scholar
[26]Smolyakov, A. I. and Diamond, P. H. 1999 Phys. Plasmas 6, 4410.CrossRefGoogle Scholar
[27]Trines, R., Bingham, R., Silva, L. O., Mendonça, J. T., Shukla, P. K. and Mori, W. B. 2005 Phys. Rev. Lett. 94, 165002.CrossRefGoogle Scholar
[28]Murphy, C. D. et al. 2006 Phys. Plasmas 13, 033108.CrossRefGoogle Scholar
[29]Wilks, S. C., Dawson, J. M., Mori, W. B., Katsouleas, T. and Jones, M. E. 1989 Phys. Rev. Lett. 62, 2600.CrossRefGoogle Scholar
[30]Savage, R. L., Joshi, C. and Mori, W. B. 1992 Phys. Rev. Lett. 68, 946.CrossRefGoogle Scholar
[31]Wood, W. M., Siders, C. W. and Downer, M. C. 1991 Phys. Rev. Lett. 67, 3523.CrossRefGoogle Scholar
[32]Silva, L. O. and Mendonça, J. T. 2001 Opt. Commun. 196, 285.CrossRefGoogle Scholar
[33]Dias, J. M. et al. Phys. Rev. Lett. 78, 4773.CrossRefGoogle Scholar
[34]Lopes, N. C., Figueira, G., Dias, J. M., Silva, L. O., Mendonça, J. T., Balcou, Ph., Rey, G. and Stenz, C. 2004 Europhys. Lett. 66, 371.CrossRefGoogle Scholar
[35]Koga, J. K., Naumova, N., Kando, M., Tsintsadze, L. N., Nakajima, K., Bulanov, S. V., Dewa, H., Kotaki, H. and Tajima, T. 2000 Phys. Plasmas 7, 5223.CrossRefGoogle Scholar
[36]Trines, R. M. G. M. et al. 2009 Plasma Phys. Contr. Fusion 51, 024008.CrossRefGoogle Scholar
[37]Fonseca, R. A. et al. 2002 In: Lecture Notes in Computer Science, Vol. 2331, p. 342.CrossRefGoogle Scholar
[38]Vaivads, A., André, M., Buchert, S. C., Wahlund, J.-E., Fazakerley, A. N. and Cornilleau-Wehrlin, N. 2004 Geophys. Res. Lett. 31, L03804.CrossRefGoogle Scholar
[39]Tynan, G. R. et al. 1997 J. Vac. Sci. Tech. A 15, 2885.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *