Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:09:37.867Z Has data issue: false hasContentIssue false

Triassic corals and spongiomorphs from Hells Canyon, Wallowa terrane, Oregon

Published online by Cambridge University Press:  19 May 2016

George D. Stanley Jr.
Affiliation:
Department of Geology, University of Montana, Missoula 59812
Michael T. Whalen
Affiliation:
Department of Geology, Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244-1070

Abstract

Twenty-one species of corals and three species of spongiomorphs occur in a series of richly fossiliferous, molluscan-dominated beds with silicified bioclasts in the Upper Triassic Martin Bridge Limestone of Hells Canyon, Oregon. Two of these, Maeandrostylis grandiseptus and Recticostastraea wallowaensis are new species. Recticostastraea is designated as a new genus.

The fauna is early Norian and occurs in the island arc Wallowa terrane, one of many tectonostratigraphic terranes in western North America. Like other examples, it appears to have developed independently of the North American craton and to have links with Wrangellia. The fossil corals and spongiomorphs are para-autochthonous, occurring in a series of tempestite beds. They are interpreted to have inhabited a shallow-water carbonate platform that developed around a tropical island arc following cessation of volcanic activity. The corals and spongiomorphs are associated with abundant gastropods and a diverse epifaunal suspension-feeding bivalve fauna. Relative to the corals, branching spongiomorphs, Spongiomorpha ramosa, are more abundant and occur with relatively common branching, sheet to plate-like, colonial corals. Solitary corals are relatively rare. The associated bedded limestone includes a variety of shallow-water microfacies but throughout the Hells Canyon sequence, reef structure is absent.

Together, the 24 coral and spongiomorph taxa show mixed paleogeographic affinities with Upper Triassic faunas known only from alpine regions of the western Tethys (five species), the Pamir Mountains, U.S.S.R. (two species), and the island of Timor (one species). Five additional species are pan-Tethyan and exceptionally cosmopolitan, but 11 species (45.8%) occur only in displaced terranes. Of these, a significant component (six species) is endemic to the Wallowa terrane. At least four Hells Canyon taxa, previously thought endemic to North American terranes, have recently been reported from the high-latitude Koryak terrane of northeastern U.S.S.R., a displaced tropical volcanic terrane of the northwestern Pacific. For Triassic corals, this is the first example of a clear link between western Pacific and eastern Pacific terranes. Less similarity exists with the Wrangell Mountains, Alaska, where identical age lower Norian silicified corals and spongiomorphs are known.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. P. 1952. Madréporaires post-paléozoiques, p. 539684. In Piveteau, J. (ed.), Traité de Paléontologie, t. 1. Paris.Google Scholar
Alloiteau, J. P. 1957. Contribution a la systématique des Madréporaires fossiles. These C.N.R.S., Paris, 462 p.Google Scholar
Beauvais, L. 1980. Sur la Taxinomie des Madréporaires mesozoiques. Acta Palaeontologica, 25:345360.Google Scholar
Beauvais, L., and Poulton, T. P. 1980. Quelques coraux du Trias et du Jurassique du Canada. Recherche en Cours, partie C. Commission Geologique du Canada, 80–1C:95101.Google Scholar
Blome, C. D., Jones, D. L., Murchey, B. L., and Liniecki, M. 1986. Geologic implications of radiolarian-bearing Paleozoic and Mesozoic rocks from the Blue Mountains province, eastern Oregon, p. 7993. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Bourne, G. C. 1900. The Anthozoa. In Lankester, R. (ed.), Treatise on Zoology, II, Chapter VI, 84 p.Google Scholar
Brooks, H. C., and Valuer, T. L. 1978. Mesozoic rocks and tectonic evolution of eastern Oregon and western Idaho, p. 133146. In Howell, D. G. and McDougall, K. A. (eds.), Mesozoic paleogeography of the western United States. Pacific Section, Society of Economic Paleontologists and Mineralogists, Pacific Coast Paleogeography Symposium. 2.Google Scholar
Clapp, C. H., and Shimer, H. W. 1911. The Sutton Jurassic of the Vancouver Group, Vancouver Island. Boston Society of Natural History, Proceedings, 34(12):426438.Google Scholar
Cuif, J. P. 1965. Sur les rapports des genres des madréporaires, Montlivaltia Lam. et Thecosmilia M. Edw. et H. et leur presence au Trias. Bulletin de la Société Geologique de France, série 7, 7:530536.CrossRefGoogle Scholar
Cuif, J. P. 1966. Structure de quelques Polypiers phacéloides triassiques. Bulletin Société Geologique de France, sér. 7, 8:125132.CrossRefGoogle Scholar
Cuif, J. P. 1972. Recherches sur les Madréporaires du Trias I. Famille des Stylophyllidae. Bulletin du Museum National d'Histoire Naturelle, Paris, série 3, no. 97, Sciences de la Terre, 17:211291.Google Scholar
Cuif, J. P. 1974. Recherches sur les Madréporaires du Trias II. Astraeoida. Revision des genres Montlivaltia et Thecosmilia . Etude de quelques types structuraux du Trias de Turquie. Bulletin du Museum National d'Histoire Naturelle, Paris, série 3, no. 275, Sciences de la Terre , 40:293400.Google Scholar
Cuif, J. P. 1975. Recherches sur les Madréporaires du Trias III. Etude des structures pennulaires chez les Madréporaires triassique. Bulletin du Museum National d'Histoire Naturelle, Paris, série 3, no. 310, Sciences de la Terre, 44:45127.Google Scholar
Cuif, J. P. 1976. Recherches sur les Madréporaires du Trias IV. Formes cérioméandroides et thamnastérioides du Trias des Alpes et du Taurus sud-anatolien. Bulletin du Museum National d'Histoire Naturelle, Paris, série 3, no. 381, Sciences de la Terre, 53:65194.Google Scholar
Cuif, J. P. 1977. Arguments pour une relation entre phylétique les Madréporaires paléozoiques et ceus du Trias. Memoires de la Société Géologique de France, (n. sér.), Memoir 129:154.Google Scholar
Dronov, V. I., Gaździcki, A., and Melnikova, G. K. 1982. Upper Triassic reefs in the southeastern Pamir Range. Facies, 6:107127.CrossRefGoogle Scholar
Duncan, P. M. 1867. A monograph of the British fossil corals. London Palaeontographical Society, 173.Google Scholar
Duncan, P. M. 1884. A revision of families and genera of the sclerodermic Zoantharia, Ed. & H, or Madreporaria (M. rugosa excepted). Linnean Society London Journal, Zoology, 18:1204.CrossRefGoogle Scholar
Emmrich, E. 1853. Geognostische Beobachtungen aus den oestlichen Bayerischen und den angrenzenden oestlichen Alpen. Jahrbuch d. K. K. Geologisches Reichsanstalt, IIIIV.Google Scholar
Flúgel, E., and Sy, E. 1959. Die Hydrozoan der Trias. Neues Jahrbuch für Geologie und Paläontologie, 109:1108.Google Scholar
Follo, M. F. 1986. Sedimentology of the Wallowa terrane, northeastern Oregon. Unpubl. Ph.D. dissertation, Harvard University, Cambridge, 292 p.Google Scholar
Follo, M. F. In press. Sedimentology and stratigrapy of the Martin Bridge Limestone and Hurwal Formation (Late Triassic-Early Jurassic) from the Wallowa terrane, Oregon. U.S. Geological Survey Professional Paper.Google Scholar
Frech, F. 1890. Die Korallen fauna der Trias. I. Die Korallen der juvavischen Trias-Provinz. Palaeontographica, 37:1116.Google Scholar
Gilluly, J. 1937. Geology and mineral resources of the Baker quadrangle, Oregon. U.S. Geological Survey Bulletin 879, 119 p.Google Scholar
Haas, O. H. 1909. Bericht über neue aufsammlungen in den Zlambach mergeln der Fischerwiese bei Alt-Aussee. Beiträge zur Paläontologie in Geologie, Österreich-Ungarns und des Orients. Mitteilungen des Geologie und Palaontologie Institut der Universität Wien:143165.Google Scholar
Hamilton, W. 1963. Metamorphism in the Riggins region, western Idaho. U.S. Geological Survey Professional Paper 436, 95 p.Google Scholar
Howell, D. G., Jones, D. L., and Schermer, E. R. 1985. Tectonostratigraphic terranes of the Circum-Pacific region, p. 330. In Howell, D. G. (ed.), Tectonostratigraphic terranes of the Circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources Science Series. 1.Google Scholar
Jones, D. L., Silberling, N. J., and Hillhouse, J. W. 1977. Wrangellia—a displaced terrane in northwestern North America. Canadian Journal of Earth Sciences, 14:25652577.CrossRefGoogle Scholar
Jones, D. L., Silberling, N. J., Cox, A., Coney, P., and Beck, M. 1982. The growth of western North America. Scientific American, 247:7084.CrossRefGoogle Scholar
Kanmera, K. 1964. Triassic coral faunas from the Konose Group in Kyushu. Memoirs, Faculty of Sciences, Kyushu University, series D, Geology, 15(1):117147.CrossRefGoogle Scholar
Kolosváry, G. 1966. Über Triaskorallenfauna Ungarns. Acta Biologica, 12:125137.Google Scholar
Kristan-Tollmann, E., Tollmann, A., and Hamedani, A. 1980. Beiträge zur Kenntnis der Trias von Persien. II. Zur Rhätfauna von Bagerbad bei Isfahan (Korallen, Ostracoden). Mitteilungen österreiches geologische Gesellschaft, 73:163235.Google Scholar
LeMaitre, D. 1935. Description des Spongiomorphides et des Algues du Lias Marocain. Maroc Service des Mines et de la Carte Geologique, Notes et Memoires, 34:1958.Google Scholar
LeMaitre, D. 1937. Nouvelles Recherches sur les Spongiomorphides et les Algues du Lias et de l'Oolithe inférieure. Maroc Service des Mines et de la Carte Geologique, Notes et Memoires, 43:125.Google Scholar
Melnikova, G. K. 1968. The genus Cyathocoenia (Hexacoralla). Paleontological Journal, 2(1):915.Google Scholar
Melnikova, G. K. 1971. New data on the morphology, microstructure and systematics of the Late Triassic Thamnasteroidea. Paleontological Journal, 5(2):156169.Google Scholar
Melnikova, G. K. 1975. Pozdnetriasovie skleraktinii yugo-vostochnogo Pamira. Akad. Nauk Tadschikskoi SSR Institute of Geology, 234 p.Google Scholar
Melnikova, G. K. 1983. New Upper Triassic Scleractinia from the Pamir region. Paleontological Journal, 17(1):4149.Google Scholar
Melnikova, G. K., and Bychkov, Y. M. 1986. Pozdnetriasovye skleraktinii khrebta Kenkeren (Koriakskoe nagor'e) [Late Triassic scleractinians from the Kenkeren Range (Koryakskoe highland)], p. 6381. In Zakharov, Y. D. and Zakharov, Y. I. (eds.), Korreliatsia permo-triasovykh otlozhenii Vostoka SSSR [Correlation of Permo-Triassic deposits of the east of the U.S.S.R.]. Biol-pochv. int. DVNTs AN SSSR. Vladivostok, DVNTs AN SSSR.Google Scholar
Milne-Edwards, H., and Haime, J. 1848. Recherches sur les Polypiers. I. Observations sur la structure et le développement des polypiers en général. Annales Sciences Naturelles (Paris), sér. 3, 9:3789.Google Scholar
Montanaro Gallitelli, E., Russo, A., and Ferrari, P. 1979. Upper Triassic coelenterates of western North America. Bollettino della Societa Paleontologica Italiana, 18:133156.Google Scholar
Mortimer, N. 1986. Late Triassic, arc-related, potassic igneous rocks in the North American Cordillera. Geology, 14:10351038.2.0.CO;2>CrossRefGoogle Scholar
Mueller, S. W. 1936. Triassic coral reefs in Nevada. American Journal of Science, 231:202208.CrossRefGoogle Scholar
Newton, C. R. 1983. Paleozoogeographic affinities of Norian bivalves from the Wrangellian, Peninsular, and Alexander terranes, p. 3748. In Stevens, C. H. (ed.), Pre-Jurassic Rocks in Western North American Suspect Terranes. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, California.Google Scholar
Newton, C. R. 1986. Late Triassic bivalves of the Martin Bridge Limestone, Hells Canyon, Oregon: taphonomy, paleoecology, paleozoogeography, p. 717. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Newton, C. R., Whalen, M. T., Thompson, J. B., Prins, N., and Dellalla, D. 1987. Systematics and paleoecology of Norian (Late Triassic) bivalves from a tropical island arc: Wallowa terrane, Oregon. The Paleontological Society, Memoir 22, 83 p.Google Scholar
Nolf, B. O. 1966. Structure and stratigraphy of part of the northern Wallowa Mountains, Oregon. Unpubl. Ph.D. dissertation, Princeton University, 135 p.Google Scholar
Pessagno, E. A. Jr., and Blome, C. D. 1986. Faunal affinities and tectonogenesis of Mesozoic rocks in the Blue Mountain province of eastern Oregon and western Idaho, p. 6578. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Reuss, A. E. 1854. Beiträge zur characteristik der Kreideschichten in der Ostalpen besonders im Gesaulthale und am Wolfgangsee. Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen, Klasse Denkschrift, 7:6785.Google Scholar
Reuss, A. E. 1864. Über einige Anthozoen der Kössener Schichten und der alpinen Trias. Sitzungsberichte der Akademie Wissenschaften, Wien, 50:153164.Google Scholar
Reuss, A. E. 1865. Über einiger Anthozoen der Kössener Schichten und der alpinen Trias. Sitzungsberichte der Akademie Wissenschaften Wien, 50(1):153168.Google Scholar
Roniewicz, E. 1974. Rhaetian corals of the Tatra Mountains. Acta Geologica Polonica, 24:97116.Google Scholar
Reuss, A. E. 1989. Triassic scleractinian corals of the Zlambach beds, Northern Calcareous Alps, Austria. Denkschrift Österreiche Akademie Wissenschaften, Vienna, 126:1152.Google Scholar
Ross, C. P. 1938. The geology of part of the Wallowa Mountains, Oregon. Oregon Department of Geology and Mineral Industries Bulletin, 3:174.Google Scholar
Sarewitz, D. 1983. Seven Devils terrane: is it really a piece of Wrangellia? Geology, 11:634637.2.0.CO;2>CrossRefGoogle Scholar
Schaefer, P. 1979. Facies and paleoecology of two Upper Triassic reef complexes of the Northern Calcareous Alps (“Upper Rhaetian” Reef Limestones, Salzburg, Austria). Facies, 1:3245.Google Scholar
Schaefer, P., and Senowbari-Daryan, B. 1978. Neue Korallen (Scleractinia) aus Oberrhat-Riffkalken südlich von Salzburg (nördliche Kalkalpen, Österreich). Senckenbergiana Lethaea, 59:117135.Google Scholar
Schafhäutl, K. E. 1863. Sudbayers Lethaea geognostica. Der Kresseberg und die sudlich von ihm gelgenen Hochalpen geognostisch betrachtet in ihren Petrefacten. Leipzig, 478 p.Google Scholar
Senowbari-Daryan, B., and Stanley, G. D. Jr. 1988. Triassic sponges (Sphinctozoa) from Hells Canyon, Oregon. Journal of Paleontology, 62:419423.CrossRefGoogle Scholar
Silberling, N. J., Jones, D. L., Blake, M. C., and Howell, D. G. 1984. Lithotectonic terrane map of the western conterminous United States, p. C1C43. In Silberling, N. J. and Jones, D. L. (eds.), Lithotectonic terrane maps of the North American Cordillera. U.S. Geological Survey Open-File Report 84–523.Google Scholar
Smith, J. P. 1927. Upper Triassic marine invertebrate faunas of North America. U.S. Geological Survey Professional Paper 141, 262 p.Google Scholar
Smith, W. D., and Allen, J. E. 1941. Geology and physiography of the northern Wallowa Mountains, Oregon. Department of Geology and Mineral Industries Bulletin, 12:165.Google Scholar
Squires, D. F. 1956. A new Triassic coral fauna from Idaho. American Museum Novitates, 1797:121.Google Scholar
Stanley, G. D. Jr. 1979. Paleoecology, structure, and distribution of Triassic coral buildups in western North America. University of Kansas Paleontological Contribution, 65:168.Google Scholar
Stanley, G. D. Jr. 1986. Late Triassic coelenterate faunas of western Idaho and northeastern Oregon: implications for biostratigraphy and paleogeography, p. 2336. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Stanley, G. D. Jr. 1988. The history of early Mesozoic reef communities: a three-step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr. 1989. A Late Triassic reefal limestone, southern Vancouver Island, B.C. Canadian Society of Petroleum Geology, Memoir 13:766775.Google Scholar
Stanley, G. D. Jr., and Senowbari-Daryan, B. 1986. Upper Triassic, Dachstein-type reef limestone from the Wallowa Mountains, Oregon: first reported occurrence in the United States. Palaios, 1:172177.CrossRefGoogle Scholar
Stoppani, A. 1858. Les petrifications d'Esino ou description des fossils appartenant au depot triassique superieur des environs d'Esino en Lombardie. Milano, p. 1113.Google Scholar
Turnšek, D., Seyfried, H., and Geyer, O. F. 1975. Geologische und paläontologische Untersuchungen an einem Korallen-Vorkommen in subbetischen Unterjura von Murcia (Sud-Spanien). Slovenska Akademie Znanosti in Umetnosti Academie Sciences Artium Slovenica. Razprave Dissertationes, 18(5):135.Google Scholar
Valuer, T. L. 1967. The geology of part of the Snake River canyon and adjacent areas in northeastern Oregon and western Idaho. Unpubl. Ph.D. dissertation, Oregon State University, Corvallis, 267 p.Google Scholar
Valuer, T. L. 1977. The Permian and Triassic Seven Devils Group, western Idaho and northeastern Oregon. U.S. Geological Survey Bulletin 1437, 58 p.Google Scholar
Valuer, T. L., Brooks, C. H., and Thayer, T. P. 1977. Paleozoic rocks in eastern Oregon and western Idaho, p. 455466. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E. (eds.), Paleozoic paleogeography of the western United States. Pacific Section, Society of Economic Paleontologists and Mineralogists, Pacific Coast Paleogeography Symposium 1.Google Scholar
Valuer, T. L., Brooks, C. H., and Engebretson, D. C. 1984. The Blue Mountains island arc of Oregon, Idaho, and Washington: an allochthonous coherent terrane from the ancestral western Pacific Ocean?, p. 197199. In Howell, D. G., Jones, D. L., Cox, A., and Nur, A. (eds.), Proceedings of the Circum-Pacific Terrane Conference. Stanford University Publications in the Geological Sciences, 18.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Paper 44, 363 p.Google Scholar
Vinassa de Regny, P. 1915. Triadische Algen, Spongien, Anthozoen und Bryozoen aus Timor. Palaeontologie Timor, Wanner, Joh. (ed.), 4(8):73118.Google Scholar
Volz, W. 1896. Die Korallenfauna der Schichten von St. Cassian im Süd-Tirol. Palaeontographica, 43:1123.Google Scholar
Wells, J. W. 1956. Scleractinia. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata, p. F328F444. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Whalen, M. T. 1985. The carbonate petrology and paleoecology of Upper Triassic limestones of the Wallowa terrane, Oregon and Idaho. Unpubl. M.S. thesis, University of Montana, Missoula, 151 p.Google Scholar
Whalen, M. T. 1988. Depositonal history of an Upper Triassic drowned carbonate platform sequence: Wallowa terrane, Oregon and Idaho. Geological Society of America Bulletin, 100:10971110.2.3.CO;2>CrossRefGoogle Scholar
Wilkens, O. 1937. Korallen und Kalkschwämme aus dem obertriadischen Pharetronenkalk von Seram (Mollukken). Neues Jahrbuch für Mineralogie und Paläontologie, Stuttgart, 77 (B):171211.Google Scholar
Wu, W. S. 1975. The coral fossils from the Qomolangma Feng region: a report of scientific investigations in the Qomolongma Feng region (Paleontology Fasc. I). Nanking Institute Geology and Paleontology, Academia Sinica, China, p. 83128.Google Scholar
Zankl, H. 1969. Der Hohe Göll. Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen Senckenbergiana Naturforschungs Gesellschaft, 519:1123.Google Scholar