Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T22:20:50.484Z Has data issue: false hasContentIssue false

Shale-hosted biota from the Dismal Lakes Group in Arctic Canada supports an early Mesoproterozoic diversification of eukaryotes

Published online by Cambridge University Press:  07 July 2021

Corentin C. Loron
Affiliation:
Early Life Traces and Evolution–Astrobiology Laboratory, UR Astrobiology, University of Liège, Liège, Belgium ,
Galen P. Halverson
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada
Robert H. Rainbird
Affiliation:
Geological Survey of Canada, Ottawa, Ontario, Canada ,
Tom Skulski
Affiliation:
Geological Survey of Canada, Ottawa, Ontario, Canada ,
Elizabeth C. Turner
Affiliation:
Harquail School of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada
Emmanuelle J. Javaux
Affiliation:
Early Life Traces and Evolution–Astrobiology Laboratory, UR Astrobiology, University of Liège, Liège, Belgium ,

Abstract

The Mesoproterozoic is an important era for the development of eukaryotic organisms in oceans. The earliest unambiguous eukaryotic microfossils are reported in late Paleoproterozoic shales from China and Australia. During the Mesoproterozoic, eukaryotes diversified in taxonomy, metabolism, and ecology, with the advent of eukaryotic photosynthesis, osmotrophy, multicellularity, and predation. Despite these biological innovations, their fossil record is scarce before the late Mesoproterozoic. Here, we document an assemblage of organic-walled microfossils from the 1590–1270 Ma Dismal Lakes Group in Canada. The assemblage comprises 25 taxa, including 11 morphospecies identified as eukaryotes, a relatively high diversity for this period. We also report one new species, Dictyosphaera smaugi new species, and one unnamed taxon. The diversity of eukaryotic forms in this succession is comparable to slightly older assemblages from China and is higher than worldwide contemporaneous assemblages and supports the hypothesis of an earlier diversification of eukaryotes in the Mesoproterozoic.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, Z.R., Skidmore, M.L., Mogk, D.W., and Butterfield, N.J., 2017, A Laurentian record of the earliest fossil eukaryotes: Geology, v. 45, p. 387390.CrossRefGoogle Scholar
Agić, H., Moczydłowska, M., and Yin, L.M., 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.CrossRefGoogle Scholar
Agić, H., Moczydłowska, M., and Yin, L., 2017, Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton—a window into the early eukaryote evolution: Precambrian Research, v. 297, p. 101130.CrossRefGoogle Scholar
Arouri, K., Greenwood, P.F., and Walter, M.R., 1999, A possible chlorophycean affinity of some Neoproterozoic acritarchs: Organic Geochemistry, v. 30, p. 13231337.CrossRefGoogle Scholar
Arouri, K.R., Greenwood, P.F., and Walter, M.R., 2000, Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterization: Organic Geochemistry, v. 31, p. 7589.CrossRefGoogle Scholar
Baludikay, B.K., Storme, J.Y., François, C., Baudet, D., and Javaux, E.J., 2016, A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso-Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy: Precambrian Research, v. 281, p. 166184.CrossRefGoogle Scholar
Baragar, W.R.A., and Donaldson, J.A., 1973, Coppermine and Dismal lakes map-areas 86 O and 86 N: Geological Survey of Canada Paper 71-39, 20 p.Google Scholar
Bartley, J.K., Kah, L.C., Frank, T.D., and Lyons, T.W., 2015, Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites: Geobiology, v. 13 p. 1532.CrossRefGoogle ScholarPubMed
Beghin, J., Storme, J.Y., Blanpied, C., Gueneli, N., Brocks, J.J., Poulton, S.W., and Javaux, E.J., 2017, Microfossils from the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa: Precambrian Research, v. 291, p. 6382.CrossRefGoogle Scholar
Bengtson, S., Sallstedt, T., Belivanova, V., and Whitehouse, M., 2017, Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae: PLOS Biology, v. 15, e2000735.CrossRefGoogle ScholarPubMed
Berbee, M.L., Strullu-Derrien, C., Delaux, P.M., Strother, P.K., Kenrick, P., Selosse, M.A., and Taylor, J.W., 2020, Genomic and fossil windows into the secret lives of the most ancient fungi: Nature Reviews Microbiology, v. 18, p. 717730.CrossRefGoogle ScholarPubMed
Betts, H.C., Puttick, M.N., Clark, J.W., Williams, T.A., Donoghue, P.C., and Pisani, D., 2018, Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin: Nature Ecology and Evolution, v. 2, p. 15561562.CrossRefGoogle ScholarPubMed
Bonneville, S., Delpomdor, F., Préat, A., Chevalier, C., Araki, T., Kazemian, M., Steele, A., Schreiber, A., Wirth, R., and Benning, L.G., 2020, Molecular identification of fungi microfossils in a Neoproterozoic shale rock: Science Advances, v. 6, p.eaax7599.CrossRefGoogle Scholar
Bosak, T., Macdonald, F., Lahr, D., and Matys, E., 2011a, Putative Cryogenian ciliates from Mongolia: Geology, v. 39, p. 11231126.CrossRefGoogle Scholar
Bosak, T., Lahr, D.J.G., Pruss, S.B., Macdonald, F.A., Dalton, L., and Matys, E., 2011b, Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia: Earth and Planetary Science Letters, v. 308, p. 2940.CrossRefGoogle Scholar
Bosak, T., Lahr, D.J.G., Pruss, S.B., Macdonald, F.A., Gooday, A.J., Dalton, L., and Matys, E.D., 2012, Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates: Geology, v. 40, p. 6770.CrossRefGoogle Scholar
Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Hallmann, C., Hoshino, Y., and Liyanage, T., 2017, The rise of algae in Cryogenian oceans and the emergence of animals: Nature, v. 548, p. 578581.CrossRefGoogle ScholarPubMed
Budd, G.E., and Mann, R.P., 2019, The dynamics of stem and crown groups: Science Advances, v. 6, eaaz1626.CrossRefGoogle Scholar
Butterfield, N.J., 1997, Plankton ecology and the Proterozoic–Phanerozoic transition: Paleobiology, v. 23, p. 247262.CrossRefGoogle Scholar
Butterfield, N.J., 2000, Bangiomorpha pubescens: Paleobiology, v. 26, p. 386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N.J., 2004, A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian Explosion: Paleobiology, v. 30, p. 231252.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N.J., 2009, Modes of pre-Ediacaran multicellularity: Precambrian Research, v. 173, p. 201211.CrossRefGoogle Scholar
Butterfield, N.J., 2015a, Early evolution of the Eukaryota: Palaeontology, v. 58, p. 517.CrossRefGoogle Scholar
Butterfield, N.J., 2015b, Proterozoic photosynthesis—a critical review: Palaeontology, v. 58, p. 953972.CrossRefGoogle Scholar
Butterfield, N.J., Knoll, A.H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Lethaia, v. 27, p. 76.CrossRefGoogle Scholar
Bykova, N., LoDuca, S.T., Ye, Q., Marusin, V., Grazhdankin, D., and Xiao, S., 2020, Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae: Precambrian Research, v. 350, p. 105875.CrossRefGoogle Scholar
Cohen, P.A., and Macdonald, F.A., 2015, The Proterozoic record of eukaryotes: Paleobiology, v. 41, p. 610632.CrossRefGoogle Scholar
Cohen, P.A., and Riedman, L.A., 2018, It's a protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian–Cryogenian ocean: Emerging Topics in Life Sciences, v. 2, p. 173180.Google ScholarPubMed
Cohen, P.A., Vizcaíno, M., and Anderson, R.P., 2020, Oldest fossil ciliates from the Cryogenian glacial interlude reinterpreted as possible red algal spores: Palaeontology, v. 63, p. 941950.CrossRefGoogle Scholar
Cornet, Y., François, C., Compère, P., Callec, Y., Roberty, S., Plumier, J.C., and Javaux, E.J., 2019, New insights on the paleobiology, biostratigraphy and paleogeography of the pre-Sturtian microfossil index taxon Cerebrosphaera: Precambrian Research, v. 332, 105410.CrossRefGoogle Scholar
Demoulin, C.F., Lara, Y.J., Cornet, L., François, C., Baurain, D., Wilmotte, A., and Javaux, E.J., 2019, Cyanobacteria evolution: insight from the fossil record: Free Radical Biology and Medecine, v. 140, p. 206223.CrossRefGoogle ScholarPubMed
Dong, L., and Xiao, S., 2006, On the morphological and ecological history of Proterozoic macroalgae, in Xiao, S., and Kaufman, A.J., eds., Neoproterozoic Geobiology and Paleobiology: Dordrecht, Springer, p. 5790.Google Scholar
Eisenack, A., 1958, Tasmanites Newton 1975 und Leiosphaeridia n. gen. aus gattungen der Hystrichosphaeridea: Palaeontographica Abteilung A, v. 110, p. 119.Google Scholar
Eisenack, A., 1972, Kritische Bemerkung zur Gattung Pterospermopsis (Chlorophyta, Prasinophyceae): Neues Jahrbuch Geologie Paleaontologie, v. 10, p. 596601.Google Scholar
Eme, L., Sharpe, S.C., Brown, M.W., and Roger, A.J., 2014, On the age of eukaryotes: evaluating evidence from fossils and molecular clocks: Cold Spring Harbor Perspectives in Biology, v. 6, a016139.CrossRefGoogle ScholarPubMed
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M., and Hill, J.M., 1990, Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa: American Association of Stratigraphic Palynologists Contributions Series, v. 25, 771 p.Google Scholar
Frank, T.D., Kah, L.C., and Lyons, T.W., 2003, Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean: Geological Magazine, v. 140, p. 397420.CrossRefGoogle Scholar
French, J.E., Heaman, L.M., and Chacko, T., 2002, Feasibility of chemical U–Th–total Pb baddeleyite dating by electron microprobe: Chemical Geology, v. 188, p. 85104.CrossRefGoogle Scholar
Gibson, T.M., et al. , 2017, Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis: Geology, v. 46, p. 135138.CrossRefGoogle Scholar
Golub, I.N., 1979, A new group of problematic microfossils from Vendian deposits of the Orshan depression (Russian Platform), in Sokolov, B.S., ed., Paleontology of Precambrian and Early Cambrian: Leningrad, Nauka, p. 147155. [in Russian]Google Scholar
Graham, L.E., and Wilcox, L.W., 2000, Algae: Upper Saddle River, New Jersey, Prentice Hall, 640 p.Google Scholar
Grey, K., 1999, A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-soluble microfossils: Geological Survey of Western Australia, Department of Mineral and Energy, record 1999/10.Google Scholar
Guy-Ohlson, D., 1996, Prasinophycean algae, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications, v. 1: Salt Lake City, American Association of Stratigraphic Palynologists Foundation, p. 181189.Google Scholar
Hamilton, M.A., and Buchan, K.L., 2010, U-Pb geochronology of the Western Channel Diabase, northwestern Laurentia: implications for a large 1.59 Ga magmatic province, Laurentia's APWP and paleocontinental reconstructions of Laurentia, Baltica and Gawler craton of southern Australia: Precambrian Research, v. 183, p. 463473.CrossRefGoogle Scholar
Hermann, T.N., 1974, Findings of mass accumulations of trichomes in the Riphean, in Timofeev, B.V., ed., Proterozoic and Paleozoic Microfossils of the USSR: Moscow, Nauka, p. 610. [in Russian]Google Scholar
Hermann, T.N., 1990, Organic World Billion Year Ago: Leningrad, Nauka.Google Scholar
Hofmann, H.J., and Jackson, G.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Journal of Paleontology, v. 68, p. 135.CrossRefGoogle Scholar
Horodyski, R.J., and Donaldson, J.A., 1980, Microfossils from the middle Proterozoic Dismal Lakes groups, arctic Canada: Precambrian Research, v. 11, p. 125159.CrossRefGoogle Scholar
Horodyski, R.J., and Donaldson, J.A., 1983, Distribution and significance of microfossils in cherts of the middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada: Journal of Paleontology, v. 57, p. 271288.Google Scholar
Horodyski, R.J., Donaldson, J.A., and Kerans, C., 1980, A new shale-facies microbiota from the middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada: Canadian Journal of Earth Sciences, v. 17, p. 11661173.CrossRefGoogle Scholar
Hu, Y., and Fu, J., 1982, Micropalaeoflora from the Gaoshanhe Formation of late Precambrian of Luonan, Shaanxi and its stratigraphic significance: Bulletin of the Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Science, v. 4, p. 102113.Google Scholar
Imachi, H., et al. , 2020, Isolation of an archaeon at the prokaryote–eukaryote interface: Nature, v. 577, p. 519525.CrossRefGoogle Scholar
Inouye, I., Hori, T., and Chihara, M., 1990, Absolute configuration of the flagellar apparatus of Pterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position: Journal of Phycology, v. 26, p. 329344.CrossRefGoogle Scholar
Jachowicz-Zdanowska, M., 2013, Cambrian phytoplankton of the Brunovistulicum: taxonomy and biostratigraphy: Polish Geological Institute Special Papers 28, 150 p.Google Scholar
Jankauskas, T.V., 1979, Middle Riphean microbiota of the southern Urals and the Ural region in Bashkiria: Proceeding of the USSR Academy of Sciences, v. 248, p. 190193. [in Russian]Google Scholar
Jankauskas, T.V., 1980, Shisheniak microbiota of the Upper Riphean of the Southern Urals: Akademiya Nauka SSSR Transactions, v. 251, p. 190192. [in Russian]Google Scholar
Jankauskas, T.V., 1982, Microfossils of the Riphean of the South Urals, the Riphean Stratotype, Paleontology, Paleomagnitism: Proceeding of the USSR Academy of Sciences, v. 268, p. 84120. [in Russian]Google Scholar
Jankauskas, T.V., Mikhailova, N.S., and Hermann, T.N., 1989, Microfossils of the Precambrian of the USSR: Leningrad, Nauka. [in Russian]Google Scholar
Javaux, E.J., 2007, The early eukaryotic fossil record, in Jékely, G., ed., Eukaryotic Membranes and Cytoskeleton. Advances in Experimental Medicine and Biology, v. 607: New York, Springer, p. 119.Google Scholar
Javaux, E.J., 2011, Early eukaryotes in Precambrian oceans: Origins and Evolution of Life, v. 6, p. 414449.Google Scholar
Javaux, E.J., 2019, Challenges in evidencing the earliest traces of life: Nature, v. 572, p. 451460.CrossRefGoogle ScholarPubMed
Javaux, E.J., and Knoll, A.H., 2017, Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution: Journal of Paleontology, v. 91, p. 199229.CrossRefGoogle Scholar
Javaux, E.J., and Lepot, K., 2018, The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth's middle-age: Earth-Science Reviews, v. 176, p. 6886.CrossRefGoogle Scholar
Javaux, E.J., and Marshal, C.P., 2006, A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 115.CrossRefGoogle Scholar
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.CrossRefGoogle ScholarPubMed
Javaux, E.J., Knoll, A.H., and Walter, M., 2003, Recognizing and interpreting the fossils of early eukaryotes: Origins of Life and Evolution of the Biosphere, v. 33, p. 7594.CrossRefGoogle ScholarPubMed
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.CrossRefGoogle Scholar
Javaux, E.J., Marshall, C.P., and Bekker, A., 2010, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits: Nature, v. 463, p. 934938.CrossRefGoogle ScholarPubMed
Kerans, C., 1982, Sedimentology and stratigraphy of the Dismal Lakes Group, Proterozoic, Northwest Territories [Ph.D. thesis]: Ottawa, Carleton University, 466 p.Google Scholar
Kerans, C., 1983, Timing of emplacement of the Muskox intrusion: constraints from Coppermine homocline cover strata: Canadian Journal of Earth Sciences, v. 20, p. 673683.CrossRefGoogle Scholar
Kerans, C., Ross, G.M., Donaldson, J.A., Geldsetzer, H.J., and Campbell, F.H.A., 1981, Tectonism and depositional history of the Helikian Hornby Bay and Dismal Lakes groups, District of Mackenzie, in Campbell, F.H.A., ed., Proterozoic Basin of Canada: Geological Survey of Canada Paper 81–10, p. 157182.Google Scholar
Knoll, A.H., 2014, Paleobiological perspectives on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology, v. 6, a016121.CrossRefGoogle ScholarPubMed
Knoll, A.H., and Lahr, D.J.G., 2016, Fossils, feeding, and the evolution of complex multicellularity, in Niklas, K.J., and Newman, S.A., eds., Multicellurity: Origin and Evolution: Cambridge, Massachusetts, MIT Press, p. 316.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.CrossRefGoogle ScholarPubMed
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 361, p. 10231038.CrossRefGoogle Scholar
Koonin, E.V., 2010, The origin and early evolution of eukaryotes in the light of phylogenomics: Genome Biology, v. 11, art. 209.CrossRefGoogle ScholarPubMed
Koumandou, V.L., Wickstead, B., Ginger, M.L., Van Der Giezen, M., Dacks, J.B., and Field, M.C., 2013, Molecular paleontology and complexity in the last eukaryotic common ancestor: Critical Reviews in Biochemistry and Molecular Biology, v. 48, p. 373396.CrossRefGoogle ScholarPubMed
Lamb, D.M., Awramik, S.M., Chapman, D.J., and Zhu, S., 2009, Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China: Precambrian Research, v. 173, p. 93104.CrossRefGoogle Scholar
LeCheminant, A.N., and Heaman, L.M., 1989, Mackenzie igneous events, Canada: middle Proterozoic hotspot magmatism associated with ocean opening: Earth and Planetary Science Letters, v. 96, p. 3848.CrossRefGoogle Scholar
Li, G., Pang, K., Chen, L., Zhou, G., Han, C., Yang, L., and Wang, W., 2019, Organic-walled microfossils from the Tonian Tongjiazhuang Formation of the Tumen Group in western Shandong, North China Craton and their biostratigraphic significance: Gondwana Research, v. 76, p. 260289.CrossRefGoogle Scholar
Li, M., Liu, P., Yin, C., Tang, F., Gao, L., and Chen, S., 2012, Acritarchs from the Baicaoping Formation (Ruyang Group) of Henan: Acta Palaeontological Sinica, v. 51, p. 7687.Google Scholar
López-García, P., and Moreira, D., 2015, Open questions on the origin of eukaryotes: Trends in Ecology and Evolution, v. 30, p. 697708.CrossRefGoogle ScholarPubMed
Loron, C.C., and Moczydłowska, M., 2018, Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden: Palynology, v. 42, p. 220254.CrossRefGoogle Scholar
Loron, C.C., Rainbird, R.H., Turner, E.C., Greenman, J.W., and Javaux, E.J., 2018, Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada: Emerging Topics in Life Sciences, v. 2, p. 247255.Google ScholarPubMed
Loron, C.C., Rainbird, R.H., Turner, E.C., Greenman, J.W., and Javaux, E.J., 2019a, Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance: Precambrian Research, v. 321, p. 349374.CrossRefGoogle Scholar
Loron, C.C., François, C., Rainbird, R.H., Turner, E.C., Borensztajn, S., and Javaux, E.J., 2019b, Early fungi from the Proterozoic era in Arctic Canada: Nature, v. 570, p. 232235.CrossRefGoogle Scholar
Luo, Q.L., 1991, New data on the microplants from Changlongshan Formation of upper Precambrian in western Yanshan Range: Tianjin Institute of Geology and Mineral Resources, Bulletin 25, p. 107118. [in Chinese with English abstract]Google Scholar
Mackie, R.A., Scoates, J.S., and Weis, D., 2009, Age and Nd–Hf isotopic constraints on the origin of marginal rocks from the Muskox layered intrusion (Nunavut, Canada) and implications for the evolution of the 1.27 Ga Mackenzie large igneous province: Precambrian Research, v. 172, p. 4666.CrossRefGoogle Scholar
Maithy, P.K., 1975, Micro-organisms from the Bushimay System (late Precambrian) of Kanshi, Zaire: The Palaeobotanist, v. 22, p. 133149.Google Scholar
Marshall, C.P., Javaux, E.J., Knoll, A.H., and Walter, M.R., 2005, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to Palaeobiology: Precambrian Research, v. 138, p. 208224.CrossRefGoogle Scholar
Martí Mus, M., Moczydłowska, M., and Knoll, A.H., 2020, Morphologically diverse vase-shaped microfossils from the Russøya Member, Elbobreen Formation, in Spitsbergen: Precambrian Research, v. 350, art. 105899.CrossRefGoogle Scholar
Miao, L., Moczydłowska, M., Zhu, S., and Zhu, M., 2019, New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China: Precambrian Research, v. 321, p. 172198.CrossRefGoogle Scholar
Mikhailova, N.S., 1986, New finds of microphytofossils from upper Riphean deposits of the Krasnoyar region, in Sokolov, B.S., ed., Current Questions of Contemporary Palaeoalgology: Kiev, Naukova Dumka, p. 3137. [in Russian]Google Scholar
Moczydłowska, M., 2016, Algal affinities of Ediacaran and Cambrian organic-walled microfossils with internal reproductive bodies: Tanarium and other morphotypes: Palynology, v. 40, p. 83121.CrossRefGoogle Scholar
Moczydłowska, M., and Willman, S., 2009, Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities: Precambrian Research, v. 173, p. 2738.CrossRefGoogle Scholar
Moczydłowska, M., Landing, E., Zang, W., and Palacios, T., 2011, Proterozoic phytoplankton and timing of Chlorophyte algae origins: Palaeontology, v. 54, p. 721733.CrossRefGoogle Scholar
Morais, L., Fairchild, T.R., Lahr, D.J.G., Rudnitzki, I.D., Schopf, J.W., Garcia, A.K., Kudryavtsev, A.B., and Romero, G.R., 2017, Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization: Journal of Paleontology, v. 91, p. 393406.CrossRefGoogle Scholar
Nagovitsin, K., 2009, Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.CrossRefGoogle Scholar
Nagy, R.M., Porter, S.M., Dehler, C.M., and Shen, Y., 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.CrossRefGoogle Scholar
Naumova, S.N., 1949, Spores from the lower Cambrian: Proceeding of the USSR Academy of Sciences, v. 4, p. 4956.Google Scholar
Pang, K., Tang, Q., Yuan, X.L., Wan, B., and Xiao, S., 2015, A biomechanical analysis of the early eukaryotic fossil Valeria and new occurrence of organic-walled microfossils from the Paleo-Mesoproterozoic Ruyang Group: Palaeoworld, v. 24, p. 251262.CrossRefGoogle Scholar
Parfrey, L.W, Lahr, D.J.G., Knoll, A.H., and Katz, L.A., 2011, Estimating the timing of early eukaryotic diversification with multigene molecular clocks: Proceedings of the National Academy of Sciences, v. 108, p. 1362413629.CrossRefGoogle ScholarPubMed
Parke, M., Boalch, G.T., Jowett, R., and Harbour, D.S., 1978, The genus Pterosperma (Prasinophyceae): species with a single equatorial ala: Journal of the Marine Biological Association of the United Kingdom, v. 58, p. 239276.CrossRefGoogle Scholar
Playford, G., 2003, Acritarch and Prasinophyte Phycomata: A Short Course: Dallas, American Association of Stratigraphic Palynologists Foundation, 46 p.Google Scholar
Porter, S.M., 2016, Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA: Proceedings of the Royal Society B: Biological Sciences, v. 283, 20160221.Google Scholar
Porter, S.M., 2020, Insights into eukaryogenesis from the fossil record: Interface Focus, v. 10, 20190105.CrossRefGoogle ScholarPubMed
Porter, S.M., and Knoll, A. H., 2000, Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.2.0.CO;2>CrossRefGoogle Scholar
Porter, S.M., and Riedman, L.A., 2016. Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona: Journal of Paleontology, v. 90, p. 815853.CrossRefGoogle Scholar
Porter, S.M., Meisterfeld, R., and Knoll, A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.2.0.CO;2>CrossRefGoogle Scholar
Prasad, B., and Asher, R., 2001, Acritarch Biostratigraphy and Lithostratigraphic Classification of Proterozoic and Lower Paleozoic Sediments (Pre-unconformity Sequence) of Ganga Basin, India: Dehradun, India, Geoscience Research Group, 151 p.Google Scholar
Prasad, B., Uniyal, S.N., and Asher, R., 2005, Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India: Palaeobotanist, v. 54, p. 1360.Google Scholar
Pyatiletov, V.G., 1980, O nakhodkakh mikrofossilii roda Navifusa v Lakhandinskoi Svite [On the discovery of microfossils in the genus Navifusa in the Lakhanda Formation]: Paleontologicheskiy Zhurnal, v. 1980, p. 143145. [in Russian]Google Scholar
Rainbird, R.H., Rooney, A.D., Creaser, R.A., and Skulski, T., 2020, Shale and pyrite Re–Os ages from the Hornby Bay and Amundsen basins provide new chronological markers for Mesoproterozoic stratigraphic successions of northern Canada: Earth and Planetary Science Letters, v. 548, 116492.CrossRefGoogle Scholar
Ray, J.S., 2006, Age of the Vindhyan Supergroup: a review of recent findings: Journal of Earth System Science, v. 115, p.149160.CrossRefGoogle Scholar
Riedman, L.A., and Porter, S., 2016, Organic-walled microfossils of the mid-Neoproterozoic Alinya Formation, Officer Basin, Australia: Journal of Paleontology, v. 90, p. 854887.CrossRefGoogle Scholar
Riedman, L.A., and Sadler, P.M., 2017, Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils: Precambrian Research, v. 319, p. 618.CrossRefGoogle Scholar
Riedman, L.A., Porter, S.M., and Calver, C.R., 2018, Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon: Precambrian Research, v. 319, p. 1936.CrossRefGoogle Scholar
Ross, G.M., Kerans, C., and Narraway, J.D., 1989, Geology, Hornby Bay and Dismal Lakes Groups, Coppermine Homocline, District of Mackenzie, Northwest Territories: Geological Survey of Canada, “A” Series Map 1663A, 1 sheet, https://doi.org/10.4095/128004Google Scholar
Samuelsson, J., Dawes, P.R., and Vidal, G., 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, northwest Greenland: Precambrian Research, v. 96, p. 123.CrossRefGoogle Scholar
Schopf, J.W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.Google Scholar
Skulski, T., Rainbird, R.H., Turner, E.C., Meek, R., Ielpi, A., Halverson, G.P., Davis, W.J., Mercadier, J., Girard, E., and Loron, C.C., 2018, Bedrock geology of the Dismal Lakes–lower Coppermine River area, Nunavut and Northwest Territories: GEM-2 Coppermine River Transect, report of activities 2017–2018: Geological Survey of Canada Open File 8522, 39 p.Google Scholar
Talyzina, N.M., and Moczydlowska, M., 2000, Morphological and ultrastructural studies of some acritarchs from the lower Cambrian Lukati Formation, Estonia: Review of Palaeobotany and Palynology, v. 112, p. 121.CrossRefGoogle ScholarPubMed
Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z., and Wan, B., 2013, Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance: Precambrian Research, v. 236, p. 157181.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X., Wan, B., and Xiao, S., 2015, Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications: Precambrian Research, v. 266, p. 296318.CrossRefGoogle Scholar
Tang, Q., Hughes, N.C., McKenzie, N.R., Myrow, P.M., and Xiao, S., 2017, Late Mesoproterozoic–early Neoproterozoic organic-walled microfossils from the Madhubani Group of the Ganga Valley, northern India: Palaeontology, v. 60, p. 869891.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X., and Xiao, S., 2020, A one-billion-year-old multicellular chlorophyte: Nature Ecology and Evolution, v. 4, p. 543549.CrossRefGoogle ScholarPubMed
Tappan, H.N., 1980, The Paleobiology of Plant Protists: New York, W.H. Freeman, 1028 p.Google Scholar
Timofeev, B.V., 1966, Micropaleophytological Investigations of Ancient Formations: Moscow, Nauka, 238 p. [in Russian]Google Scholar
Timofeev, B.V., 1969, Proterozoic Spheromorphida: Leningrad, Nauka. [in Russian]Google Scholar
Vidal, G., Siedlecka, A., 1983, Planktonic, acid-resistant microfossils from the upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, East Finnmark, northern Norway: Norges Geologiske Undersøkelse NGU, v. 382, p. 4579.Google Scholar
Vorob'eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European Platform: Journal of Paleontology, v. 83, p.161196.CrossRefGoogle Scholar
Vorob'eva, N.G., Sergeev, V.N., and Petrov, P.Y., 2015, Kotuikan Formation assemblage: a diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia: Precambrian Research, v. 256, p. 201222.CrossRefGoogle Scholar
Turland, N.J., et al. , 2018, International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159: Glashütten, Koeltz Botanical Books, https://doi.org/10.12705/Code.2018CrossRefGoogle Scholar
Waterbury, J.B., and Stanier, R.Y., 1978, Patterns of growth and development in pleurocapsalean cyanobacteria: Microbiological Reviews, v. 42, p. 244.CrossRefGoogle Scholar
Weiss, A.F., 1984, Mikrofossilii iz verkhnego rifeya Turukhanskogo rajona [Microfossils from the Upper Riphean of the Turukhansk region]: Paleontologicheskiy Zhurnal, v. 2, p. 98104. [in Russian]Google Scholar
Willison, J.H., and Brown, R.M. Jr., 1978, Cell wall structure and deposition in Glaucocystis: The Journal of Cell Biology, v. 77, p. 103119.CrossRefGoogle ScholarPubMed
Xing, Y.S., and Liu, K.C., 1973, On Sinian micro-flora in Yenliao region of China and its geological significance: Acta Geologica Sinica, v. 1, p. 164.Google Scholar
Yan, Y., and Zhu, S., 1992, Discovery of acanthomorphic acritarchs from the Baicaoping Formation in Yongji, Shanxi and its geological significance: Acta Micropalaeontologica Sinica, v. 9, p. 267282.Google Scholar
Yin, L., 1987, Microbiotas of latest Precambrian sequences in China. Stratigraphy and palaeontology of systemic boundaries, in Nanjing Institute of Geology and Palaeontology Academia Sinica, ed., China: Precambrian-Cambrian Boundary: Nanjing, Nanjing Institute of Geology and Palaeontology Academia Sinica, p. 415523.Google Scholar
Yin, L.M., 1997, Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China: Review of Palaeobotany and Palynology, v. 98, p. 1525.CrossRefGoogle Scholar
Yin, L., and Guan, B., 1999, Organic-walled microfossils of Neoproterozoic Dongjia Formation, Lushan County, Henan Province, North China: Precambrian Research, v. 94, p. 121137.CrossRefGoogle Scholar
Yin, L., Xunlai, Y., Fanwei, M., and Jie, H., 2005, Protists of the upper Mesoproterozoic Ruyang Group in Shanxi Province, China: Precambrian Research, v. 141, p. 4966.Google Scholar