Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T08:47:53.860Z Has data issue: false hasContentIssue false

Scanning Em study of the living cyrtocrinid Holopus rangii (Echinodermata, Crinoidea) and implications for its functional morphology

Published online by Cambridge University Press:  20 May 2016

Stephen K. Donovan*
Affiliation:
Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica

Abstract

The unusual extant crinoid Holopus rangii d'Orbigny lacks a column, cements directly to hard substrates, has a conical to tubular dorsal cup in which plate sutures cannot be discerned, and has 10 tapered arms that are able to enroll swiftly into a “fist-like” configuration when disturbed. The first SEM study of H. rangii is presented herein. The gross morphology and skeletal microstructure of this species display many characteristics that bear an obvious relationship to the functional morphology of the living animal. Dorsal cups show a range of morphologies, reminiscent of those found in acorn barnacles and other tubular encrusters. During arm enrollment, the adjacent arms abut and form an impervious seal. Of the two specimens dissected, one had a regenerating arm.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A. 1879. Description of a young Holopus. Bulletin of the Museum of Comparative Zoology, Harvard, 5:213.Google Scholar
Bather, F. A. 1928. The fossil and its environment. Proceedings of the Geological Society of London, 84:lxixcviii.Google Scholar
Bourseau, J.-P., Ameziane-Cominardi, N., and Roux, M. 1987. Un crinoïde pédonculé nouveau (Echinodermes), représentant actuel de la famille Jurassique des Hemicrinidae: Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle-Calédonie (S.W. Pacifique). Compte Rendu de l'Académie des Sciences, Paris, 305 (series 3):595599.Google Scholar
Breimer, A. 1978. General morphology. Recent crinoids, p. T9T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.Google Scholar
Carpenter, P. H. 1884. Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–76. Part I. General morphology, with descriptions of the stalked crinoids. 11(32), 442 p.Google Scholar
Cherbonnier, G., and Guille, A. 1972. Sur une espéce actuelle de Crinoïde crétacique de la famille Holopodidae: Cyathidium foresti nov. sp. Compte Rendu de l'Académie des Sciences, Paris, 274 (series 3):21932196.Google Scholar
Donovan, S. K. 1984. Stem morphology of the Recent crinoid Chladocrinus (Neocrinus) decorus. Palaeontology, 27:825841.Google Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment, p. 241269. In Donovan, S. K. (ed.), The Processes of Fossilization. Belhaven Press, London.Google Scholar
Dujardin, F., and Hupé, H. 1862. Histoire naturelle des zoophytes, échinodermes. Roret, Paris, 628 p.Google Scholar
Emson, R. H., and Wilkie, I. C. 1980. Fission and autotomy in echinoderms. Oceanography and Marine Biology Annual Review, 18:155250.Google Scholar
Fechter, H. 1973. Cyathidium meteorensis spec. nov., ein neuer Crinoie aus der Familie Holopodidae. Helgoländer Wissenschaftliche Meeresuntersuchungen, 25:162169.Google Scholar
Grimmer, J. C., and Holland, N. D. 1987. The role of ligaments in arm extension in feather stars (Echinodermata: Crinoidea). Acta Zoologica (Stockholm), 68:7982.Google Scholar
Grimmer, J. C., and Holland, N. D. 1990. The structure of a sessile, stalkless crinoid (Holopus rangii). Acta Zoologica (Stockholm), 71:6167.CrossRefGoogle Scholar
Grimmer, J. C., Holland., N. D., and Hayami, I. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus). Zoomorphology, 105:3950.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1988. Onshore–offshore evolutionary patterns in post-Paleozoic echinoderms: a preliminary analysis, p. 8190. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference, Victoria, British Columbia, 23–28 August, 1987. A. A. Balkema, Rotterdam.Google Scholar
Jaekel, O. 1891. Ueber Holopocriniden mit besonderer Berücksichtigung der Stramberger Formen. Zeitschrift der Deutschen Geologischen Gesellschaft, 43:557670.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature, 247:394396.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. University of Kansas Paleontological Contributions, Paper 74:122.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1976. The morphology and the life habits of the abyssal crinoid Bathycrinus aldrichianus Wyville Thomson and its paleontological implications. Journal of Paleontology, 50:647667.Google Scholar
Macurda, D. B. Jr., Meyer, D. L. and Roux, M. 1978. The crinoid stereom, p. T217T228, T230, T232. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Macurda, D. B., and Roux, M. 1981. The skeletal morphology of the isocrinid crinoids Annacrinus wyvillethomsoni and Diplocrinus maclearanus. Contributions from the Museum of Paleontology, University of Michigan, 25:169219.Google Scholar
Messing, C. G., Rosesmyth, M. C., Mailer, S. R., and Miller, J. E. 1988. Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science, 42:480487.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11:154164.Google Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids, p. 377427. In Tevsez, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.Google Scholar
Meyer, D. L., Messing, C. G., and Macurda, D. B. Jr. 1978. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata). Bulletin of Marine Science, 28:412441.Google Scholar
Milsom, C. 1989. In search of truly pelagic crinoids. Abstracts, Palaeontological Association Annual Conference, Liverpool, 19–21 December:13.Google Scholar
Orbigny, A. D'. 1837. Mémoire sur une seconde espéce vivante de la famille des crinoïdes ou encrines, servant de type au nouveau genera Holope (Holopus). Magasine de Zoologie, 10, 8 p.Google Scholar
Pourtalès, L. F. de. 1878. Description of a specimen of Holopus rangii from Barbados. Memoir of the Museum of Comparative Zoology, Harvard, 4:5152.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T928. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(3). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Roux, M. 1970. Introduction à l'étude des microstructures des tiges de crinoïdes. Geobios, 3:7998.CrossRefGoogle Scholar
Roux, M. 1974a. Observations au microscope électronique à balayage de quelques articulations entre les ossicules de squelette des crinoïdes pédonculés actuels (Bathycrinidae et Isocrinina). Travaux du Laboratoire de Paleontologie, Université de Paris, Orsay:110.Google Scholar
Roux, M. 1974b. Les principaux modes d'articulation des ossicules de squelette des crinoïdes pédonculés actuels. Observations microstructurales et conséquences pour l'interprétation des fossiles. Compte Rendu de l'Académie des Sciences, Paris, 278 (series 3):20152018.Google Scholar
Roux, M. 1975. Microstructural analysis of the crinoid stem. University of Kansas Paleontological Contributions, Paper 75:17.Google Scholar
Roux, M. 1977a. Les Bourgueticrinina du Golfe de Gascogne. Bulletin de Muséum National d'Histoire Naturelle, 426 (series 3):2583.Google Scholar
Roux, M. 1977b. The stalk-joints of Recent Isocrinidae (Crinoidea). Bulletin of the British Museum (Natural History), Zoology, 32:4564.Google Scholar
Roux, M. 1980. Les articulations de pédoncule des Hyocrinidae (échinodermes, crinoïdes pédonculés): intérêt systématique et conséquences. Bulletin du Muséum National d'Histoire Naturelle, 2 (series 4):3157.Google Scholar
Schneider, J. 1988. Frequency of arm regeneration of comatulid crinoids in relation to life habit, p. 531538. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference, Victoria, British Columbia, 23–28 August, 1987. A. A. Balkema, Rotterdam.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Simms, M. J. 1989. British Lower Jurassic crinoids. Monograph of the Palaeontographical Society, London, 142(581):1103.Google Scholar
Smith, A. B. 1980. Stereom microstructure of the echinoid test. Special Papers in Palaeontology, 25:181.Google Scholar
Smith, A. B. 1984. Echinoid Palaeobiology. George Allen and Unwin, London, 191 p.Google Scholar
Thomson, C. W. 1877. On the structure and relations of the genus Holopus. Proceedings of the Royal Society of Edinburgh, 9:405410.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar