Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T11:12:49.526Z Has data issue: false hasContentIssue false

A reconnaissance of skeletal crystallography in rhombiferans, diploporans, and paracrinoids

Published online by Cambridge University Press:  20 May 2016

Brian E. Bodenbender
Affiliation:
Department of Geological and Environmental Sciences, Hope College, Holland, Michigan 49422-9000,
Erik J. Hiemstra
Affiliation:
Chevron Texaco, 9525 Camino Media, Bakersfield, California 93311,

Abstract

We characterized the skeletal crystallography of representatives of nine rhombiferan, three diploporan, and three paracrinoid species. Crystallographic data from these groups are similar to data from previous studies of crinoids, echinoids, and blastoids in that 1) orientations of c axes are consistent within species and within higher taxonomic groups; 2) c axes typically are oriented subparallel to the medial plane of their respective plates; and 3) the inclination of axes within the medial plane varies between taxa. Rhombiferan c axes are oriented normal to plate surfaces whereas diploporan c axes are tangential to plate surfaces. Paracrinoids more closely resemble diploporans in having irregular patterns of thecal plating but their c axes are approximately perpendicular to plate surfaces as in rhombiferans.

In contrast to c axes, a axes in all specimens show little regularity and cannot be distinguished from random orientations.

The rhombiferan Caryocrinites ornatus displays minor differences in the inclinations of c axes depending on the location of skeletal elements on the theca. Plates at the base of the theca have slightly aborally inclined axes, whereas distal plates have axes inclined slightly adorally. This pattern matches orientations in some early crinoids, suggesting similarities between rhombiferans and crinoids in development or skeletal construction.

Skeletal crystallography in various echinoderms can be compared in light of hypotheses of homology proposed in the Extraxial-Axial Theory (EAT). Skeletal elements homologized under the EAT do not correspond to any particular crystallographic axis orientation, suggesting that the homologies proposed in the EAT encompass significant underlying skeletal variation.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelin, N. P. 1878. Iconographia crinoideorum in stratis Sueciae siluricis fossilium (pagination unknown). Lindström, G. and Lovén, S. (eds.). Samson and Wallin, Holmiae, 62 p., 29 pls.Google Scholar
Bassler, R. S. 1943. New Ordovician cystidean echinoderms from Oklahoma. American Journal of Science, 241:694705.CrossRefGoogle Scholar
Billings, E. 1854. On some new genera and species of Cystidea from the Trenton Limestone. Canadian Journal, 2:215218, 250–253, 268–274.Google Scholar
Billings, E. 1858. On the Cystideae of the Lower Silurian rocks of Canada. Figures and Descriptions on Canadian Organic Remains, 3:974.Google Scholar
Bodenbender, B. E. 1996. Patterns of crystallographic axis orientation in blastoid skeletal elements. Journal of Paleontology, 70:466484.CrossRefGoogle Scholar
Bodenbender, B. E. 1997. Echinoderm skeletal crystallography and paleobiological applications. Paleontological Society Papers, 3:191204.CrossRefGoogle Scholar
Bodenbender, B. E., and Ausich, W. I. 2000. Skeletal crystallography and crinoid calyx architecture. Journal of Paleontology, 74:5266.2.0.CO;2>CrossRefGoogle Scholar
David, B., and Mooi, R. 1999. Comprendre les échinodermes: la contribution du modèle extraxial-axial. Bulletin de la Société Géologique de France, 170:91101.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Dillaman, R. M., and Hart, H. V. 1981. X-ray evaluation of a SEM technique for determining the crystallography of echinoid skeletons. Scanning Electron Microscopy, 3:313320.Google Scholar
Ehlers, G. M., and Leighly, J. B. 1923. Lipsanocystis traversensis, a new cystid from the Devonian of Michigan. Papers of the Michigan Academy of Science, Arts, and Letters, 2:155158.Google Scholar
Emlet, R. B. 1985. Crystal axes in Recent and fossil adult echinoids indicate trophic mode in larval development. Science, 230:937940.CrossRefGoogle ScholarPubMed
Emlet, R. B. 1988. Crystallographic axes of echinoid genital plates reflect larval form: Some phylogenetic implications, p. 299310. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Fisher, D. C., and Bodenbender, B. E. 1993. CalcAxes: A program for computing calcite crystallographic axis orientations. Contributions from the Museum of Paleontology, The University of Michigan, 28:327363.Google Scholar
Haeckel, E. 1896. Die Amphorideen und Cystoideen. Beiträge zur Morphologie und Phylogenie der Echinodermen. Festchrift zum siebenzigsten Geburtstage von Carl Gegenbaur am 21 August 1896, Volume I. W. Engelmann, Leipzig, 179 p., 5 pls.Google Scholar
Hall, J. 1852. Palaeontology of New-York, Volume II, Containing Descriptions of the Organic Remains of the Lower Middle Division of the New-York System. Printed by C. Van Benthuysen, Albany, 362 p.Google Scholar
Hall, J. 1864. Account of Some New or Little Known Species of Fossils from Rocks of the Age of the Niagara Group. Albany, New York, 16 p.Google Scholar
Kesling, R. V. 1967. Cystoids, p. S85S267. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Fossils of the Trenton Group. Geological Survey of Illinois, 3:291300.Google Scholar
Miller, S. A. 1889. North American Geology and Palaeontology for the use of Amateurs, Students, and Scientists. Cincinnati, Ohio, 664 p.CrossRefGoogle Scholar
Mooi, R., and David, B. 1997. Skeletal homologies of echinoderms. Paleontological Society Papers, 3:305335.CrossRefGoogle Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics, p. 8795. In David, B., Guille, A., Féral, J. P., and Roux, M. (eds.), Echinoderms Through Time. Balkema, Rotterdam.Google Scholar
Okazaki, K., and Inoué, S. 1976. Crystal property of the larval sea urchin spicule. Development Growth and Differentiation, 18:413434.CrossRefGoogle Scholar
Okazaki, K., Dillaman, R. M., and Wilbur, K. M. 1981. Crystalline axes of the spine and test of the sea urchin Strongylocentrotus purpuratus: determination by crystal etching and decoration. Biological Bulletin, 161:402415.CrossRefGoogle Scholar
Pander, C. H. 1830. Beiträge zur Geognosie des russischen Reiches. St. Petersburg, xx + 165 p., 31 + 4b, 4c, 16b pls.Google Scholar
Parsley, R. L., and Mintz, L. W. 1975. North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata). Bulletins of American Paleontology, 68, 116 p.Google Scholar
Paul, C. R. C. 1971. Revision of the Holocystites fauna (Diploporita) of North America. Fieldiana Geology, 24, 166 p.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Raup, D. M. 1959. Crystallography of echinoid calcite. Journal of Geology, 67:661674.CrossRefGoogle Scholar
Raup, D. M. 1962. The phylogeny of calcite crystallography in echinoids. Journal of Paleontology, 36:793810.Google Scholar
Say, T. 1825. On two genera and several species of Crinoidea. Academy of Natural Sciences of Philadelphia Journal, 4, Part 2:289296.Google Scholar
Schuchert, C. 1903. On new Siluric Cystoidea, and a new Camarocrinus . American Geologist, 32:230240.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Special Publication, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 284 p.Google Scholar
Ubaghs, G. 1978. Classification of the Echinoderms, p. T359T367. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
von Buch, C. L. 1840. Über Sphaeroniten und einige andere Geschlechter, aus welchen Crinoideen entstehen. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1840:5660.Google Scholar
von Eichwald, E. 1856. Beitrag zur geographischen Verbreitung der fossilen Thiere Russlands. Alte Periode. Bulletin de la Société Impériale des Naturalistes de Moscou, 29(1):88127.Google Scholar