Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T11:41:45.931Z Has data issue: false hasContentIssue false

Conservative evolution in nautiloid shell morphology: Evidence from the Pennsylvanian nautiloid Metacoceras mcchesneyi from Ohio, USA

Published online by Cambridge University Press:  11 August 2017

Ryoji Wani
Affiliation:
Interdisciplinary Research Center, Yokohama National University, 79–2, Tokiwadai, Hodogaya-ku, Yokohama, Japan 240–8501,
Royal H. Mapes
Affiliation:
Department of Geological Sciences, Ohio University, Athens 45701, USA,

Abstract

Morphometric analyses of shell morphology in the Pennsylvanian nautiloid Metacoceras mcchesneyi Murphy, 1970 (Cephalopoda, Mollusca) recovered from coal mines in Madison Township, Columbiana County, Ohio, USA, reveal the ontogenetic change from hatching to maturity as well as intra-specific variation of shell morphology. The shell shape of M. mcchesneyi has isometric relationships, and the umbilicus diameter between umbilical shoulders has a positive allometric relationship with shell diameter. These show that the relative whorl shape was constant through the ontogeny, but the umbilicus became relatively broader with growth. The siphuncle position moved from a ventro-central position toward the center with growth until 420° of the total rotational angle had been attained. A constriction was recognized on the early whorl at 9.5 mm in shell diameter, and the interval angles of succeeding septa were changed at the 5th septum, indicating that hatching occurred at this diameter. The ventral apertural wall, the disappearance of ornamentation toward the last preserved aperture, and the last whorl separating from the previous whorl indicate that M. mcchesneyi attained maturity at ca. 70 mm in shell diameter. Most characteristics of shell morphology in M. mcchesneyi (the relative shell shape and ornamentation through ontogeny) are comparable to those in modern and younger fossil nautilids, irrespective of taxonomy and age, supporting the conclusion that evolutionary rates of shell morphology are conservative in nautilid history.

Type
Research Article
Copyright
Copyright © 2010, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J. M. 1987. Reproduction and embryology of Nautilus , p. 353372. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.Google Scholar
Arnold, J. M., Landman, N. H., and Mutvei, H. 1987. Development of the embryonic shell of Nautilus , p. 373400. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.Google Scholar
Blanford, H. F. and Stoliczka, F. 1866. The fossil Cephalopoda of the Cretaceous rocks of southern India: Belemnitidae-Nautilidae by H. F. Blanford, Ammonitidae, with revision of the Nautilidae, etc. by F. Stoliczka. Memoirs of the Geological Survey of India (Palaeontologia Indica), Series 1, 1: 41126.Google Scholar
Boardman, D. R. II, Work, D. M., Mapes, R. H., and Barrick, J. E. 1994. Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Kansas Geological Survey Bulletin 232, 121 p.Google Scholar
Chirat, R. 2001. Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology, 27: 485499.Google Scholar
Chirat, R. and Rioult, M. 1998. Occurrence of early post-hatching Jurassic Nautilida in Normandy, France: palaeobiologic, palaeoecologic and palaeobiogeographic implications. Lethaia, 31: 137148.Google Scholar
Chirat, R., Enay, R., Hantzpergue, P., and Mangold, C. 2008. Developmental integration related to buoyancy control in nautiloids: evidence from unusual septal approximation and ontogenetic allometries in a Jurassic species. Palaeontology, 51: 251261.Google Scholar
Cichowolski, M. 2003. The nautiloid genus Cymatoceras from the Cretaceous of the Neuquén and Austral basins, Argentina. Cretaceous Research, 24: 375390.Google Scholar
Cichowolski, M., Ambrosio, A., and Concheyro, A. 2005. Nautilids from the Upper Cretaceous of the James Ross Basin, Antarctic Peninsula. Antarctic Science, 17: 267280.Google Scholar
Cochran, J. K., Rye, D. M., and Landman, N. H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology, 7: 469480.Google Scholar
Collins, D. and Ward, P. D. 1987. Adolescent growth and maturity in Nautilus , p. 421432. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Davis, R. A. and Mohorter, W. 1973. Juvenile Nautilus from the Fiji Islands. Journal of Paleontology, 47: 925928.Google Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45: 1219.Google Scholar
Eichler, R. and Ristedt, H. 1966. Untersuchungen zur Frühontogenie von Nautilus pompilius (Linne). Paläontologische Zeitschrift, 40: 173191.Google Scholar
Futuyma, D. J. 2005. Evolution. Sinauer Associates, Inc., Massachusetts, USA, 603 p.Google Scholar
Hayami, I. and Matsukuma, A. 1970. Variation of bivariate characters from the standpoint of allometry. Palaeontology, 13: 588605.Google Scholar
Hernandez-Castillo, G. R., Rothwell, G. W., and Mapes, G. 2001. Compound pollen cones in Paleozoic conifers. American Journal of Botany, 88: 11391142.Google Scholar
House, M. R. 1988. Major features of cephalopod evolution, p. 116. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods, Present and Past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Klug, C. 2004. Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the Upper Muschelkalk (Middle Triassic, Germany). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universitat Hamburg, 88: 6378.Google Scholar
Klug, C. and Lehmkuhl, A. 2004. Soft-tissue attachment and taphonomy of the Middle Triassic nautiloid Germanonautilus . Acta Palaeontologica Polonica, 49: 243258.Google Scholar
Klug, C., Brühwiler, T., Korn, D., Schweigert, G., Brayard, A., and Tilsley, J. 2007. Ammonoid shell structures of primary organic composition. Palaeontology, 50: 14631478.Google Scholar
Korn, D., Bockwinkel, J., Ebbighausen, V., and Klug, C. 2003. Palaeobiogeographic and evolutionary meaning of an early Late Tournaisian ammonoid fauna from the Tafilalt of Morocco. Acta Palaeontologica Polonica, 48: 7192.Google Scholar
Korn, D. and Klug, C. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology, 29: 329348.Google Scholar
Korn, D. and Klug, C. 2004. Cuboid Carboniferous ammonoids. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universitat Hamburg, 88: 7998.Google Scholar
Korn, D. and Klug, C. 2007. Conch form analysis, variability, and morphological disparity of a Frasnian (Late Devonian) ammonoid assemblage from Coumiac (Montagne Noire, France), p. 5786. In Landman, N. H., Davis, R. A., and Mapes, R. (eds.), Cephalopods - Present and Past: New Insights and Fresh Perspectives. Springer, New York.Google Scholar
Kummel, B. 1956. Post-Triassic nautiloid genera. Bulletin of the Museum of Comparative Zoology, 114: 324494.Google Scholar
Landman, N. H. 1988. Early ontogeny of Mesozoic ammonites and nautilids, p. 215228. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods, Present and Past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M. 1994. Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology, 20: 4051.Google Scholar
Landman, N. H., Rye, D. M., and Shelton, K. L. 1983. Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology, 9: 269279.Google Scholar
Linnaeus, C. 1758. Systema naturae per regnum tria naturae, secundum classes, ordinae, genera et species, cum characteribus, differentiis, synonymis, locis. Volume 1. Laurentii Salvii, Holmae, 824 p.Google Scholar
Mapes, R. H. and McComas, G. A. 1999. Septal implosion in coiled nautiloids from an Upper Carboniferous unit in Ohio, USA. V International Symposium, Cephalopods Present and Past, Vienna, Austria, Abstract 83.Google Scholar
Mapes, R. H. and McComas, G. A. In press. Septal implosion in Late Carboniferous coiled nautiloids from Ohio. Lethaia.Google Scholar
Mapes, R. H., Niko, S., Fryda, J., and Nützel, A. 2007. A newly hatched coiled nautiloid from the Permian. Journal of Paleontology, 81: 11181121.Google Scholar
McComas, G. A. and Mapes, R. H. 1985. Implications of septal telescoping in coiled nautiloid cephalopods from an Upper Pennsylvanian marine unit in eastern Ohio. Geological Society of America, North-Central Section, Abstracts with Programs, 17:317.Google Scholar
McComas, G. A. and Mapes, R. H. 1988. Fauna associated with the Pennsylvanian floral zones of the 7–11 Mine, Columbiana County, Northeastern Ohio. Ohio Journal of Science, 88: 5355.Google Scholar
McComas, M. 1988. Upper Pennsylvanian compression floras of the 7–11 Mine, Columbian County, northeastern Ohio. Ohio Journal of Science, 88: 4852.Google Scholar
McComas, M., McComas, G. A., and Mapes, R. H. 1986. The occurrence and significance of the lower Conemaugh (Upper Pennsylvanian) flora from the 7–11 Mine, Columbiana County, Ohio. Geological Society of America, North-Central Section, Abstracts with Programs, 18:316.Google Scholar
Miller, A. K. 1947. Tertiary nautiloids of the Americas. Geological Society of America Memoir 23: 1234.CrossRefGoogle Scholar
Miller, A. K. and Unklesbay, A. G. 1942. The cephalopod fauna of the Conemaugh Series in western Pennsylvania. Carnegie Museum Annals, 29: 127174.CrossRefGoogle Scholar
Murphy, J. L. 1970. Coiled nautiloid cephalopods from the Brush Creek limestone (Conemaugh) of eastern Ohio and western Pennsylvania. Journal of Paleontology, 44: 195205.Google Scholar
Niko, S. and Mapes, R. H. 2007. Trigonoceratid nautilids from the Early Carboniferous Imo Formation of Arkansas, Midcontinent North America. Paleontological Research, 11: 293303.Google Scholar
Oba, T., Kai, M., and Tanabe, K. 1992. Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Marine Biology, 113: 211217.Google Scholar
D'Orbigny, A. 1840. Paléontologie Française. Terrains Crétacés. 662 p.Google Scholar
Ruzhencev, V. E. and Shimansky, V. E. 1954. Lower Permian coiled and curved nautiloids of the southern Urals. Transactions of the Paleontological Institute, 50: 1152. (In Russian)Google Scholar
Saunders, W. B. 1987. The species of Nautilus , p. 3552. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.Google Scholar
Saunders, W. B., Shimansky, V. N., and Amitrov, O. 1996. Clarification of Nautilus praepompilius Shimansky from the late Eocene of Kazakhstan. Journal of Paleontology, 70: 609611.CrossRefGoogle Scholar
Slucher, E. R. 1989. Rock Camp marine zone - a new informal unit in the Conemaugh Group (Pennsylvanian) of NE Ohio. Ohio Journal of Science, Abstracts with Programs, 89: 1112.Google Scholar
Sturgeon, M., Windle, D. L., Mapes, R. H., and Hoare, R. D. 1997. Pennsylvanian cephalopods of Ohio, Part 1, Nautiloid and bactritoid cephalopods. Ohio Division of Geological Survey Bulletin 71, 191 p.Google Scholar
Tanabe, K. and Shigeta, Y. 1987. Ontogenetic shell variation and streamlining of some Cretaceous ammonites: Transactions and Proceedings of the Palaeontological Society of Japan. New Series, 147: 165179.Google Scholar
Tanabe, K. and Tsukahara, J. 1987. Biometric analysis of Nautilus pompilius from the Philippines and the Fiji Islands, p. 105113. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.Google Scholar
Taylor, B. E. and Ward, P. D. 1983. Stable isotope studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeography, Palaeoclimatology, Palaeoecology, 41: 116.CrossRefGoogle Scholar
Teichert, C. and Matsumoto, T. 1987. The ancestry of the genus Nautilus , p. 2532. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Wani, R. and Ayyasami, K. 2009. Ontogenetic change and intra-specific variation of shell morphology in the Cretaceous nautiloid (Cephalopoda, Mollusca) Eutrephoceras clementinum (d'Orbigny, 1840) from the Ariyalur area, southern India. Journal of Paleontology, 83: 365378.Google Scholar
Wani, R., De Ocampo, R. S. P., Aguilar, Y. M., Zepeda, M. A., Kurihara, Y., Hagino, K., Hayashi, H., and Kase, T. 2008. First discovery of fossil Nautilus pompilius Linnaeus, 1758 (Nautilidae, Cephalopoda) from Pangasinan, northwestern Philippines. Paleontological Research, 12: 8995.Google Scholar
Ward, P. D. 1984. Is Nautilus a living fossil?, p. 247256. In Eldredge, N. and Stanley, S. M. (eds.), Living Fossils. Springer Verlag, New York.CrossRefGoogle Scholar
Ward, P. D. 1987. The Natural History of Nautilus . Allen and Unwin, Boston, 267 p.Google Scholar
Ward, P. D. and Saunders, W. B. 1970. Allonautilus, a new genus of living nautiloid cephalopod and its bearing on the phylogeny of the Nautilida. Journal of Paleontology, 71: 10541064.Google Scholar
Woodruff, D. S., Carpenter, P., Saunders, W. B., and Ward, P. D. 1987. Genetic variation and phylogeny in Nautilus , p. 6583. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.Google Scholar
Work, D. M., Boardman, D. R., and Mapes, R. H. 2007. The Upper Pennsylvanian (Missourian) ammonoid Pennoceras from the North American Midcontinent. Journal of Paleontology, 81: 591596.Google Scholar