Hostname: page-component-7d684dbfc8-v2qlk Total loading time: 0 Render date: 2023-09-30T04:23:12.269Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau

Published online by Cambridge University Press:  26 December 2018

Shi-Qi Wang
Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China , , , Chinese Academy of Sciences Centers for Excellence in Life and Paleoenvironment, and in Tibetan Plateau Earth Sciences, Beijing, China
Qing Yang
Ningxia Geological Museum, Yinchuan 750000, China <>, <>, <>
Ya Zhao
Ningxia Geological Museum, Yinchuan 750000, China <>, <>, <>
Chun-Xiao Li
Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China , , , University of Chinese Academy of Sciences, Beijing 100049, China
Qin-Qin Shi
Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China , , ,
Li-Yi Zong
Ningxia Geological Museum, Yinchuan 750000, China <>, <>, <>
Jie Ye
Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China , , ,


Living Caprini are dominant bovids in the pan-Tibetan area that are strongly adapted to dry steppe and high-mountain meadow habitats. Some taxa with Holarctic distributions, e.g., Ovis Linnaeus, 1758, were thought to originate on the Tibetan Plateau and subsequently dispersed elsewhere, which was depicted as an ‘out of Tibet’ story. However, except for some information on a stem caprine assemblage from the Qaidam Basin, the early evolution of Caprini around the Tibetan Plateau is poorly known. Here, we report new material of Olonbulukia tsaidamensis Bohlin, 1937, which was a member of this stem caprine assemblage, from the Wuzhong region, northern China, confirming the similarity of the Wuzhong Fauna and ‘Qaidam Fauna.’ Based on a biometric study of horncores from the ‘Qaidam’ and Wuzhong faunas, we recognize six taxa from this stem caprine assemblage: O. tsaidamensis, O. sp., Qurliqnoria cheni Bohlin, 1937, Tossunnoria pseudibex Bohlin, 1937, ?Protoryx cf. P. enanus Köhler, 1987, and cf. Pachytragus sp. Among these taxa, Q. cheni and T. pseudibex are probably related to some extant Tibetan endemic species, e.g., the Tibetan antelope, Pantholops hodgsonii (Abel, 1826), and the Himalayan tahr, Hemitragus jemlahicus (Smith, 1826). Others might be ancestral to the Turolian caprine assemblages and even possibly gave rise to the extant Caprina. This work reveals an early radiation of stem caprines along the northern side of the rising Tibetan Plateau and indicates a mixed pattern of pan-Tibetan stem caprine evolution prior to their dispersal out of the Tibetan Plateau.

Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abel, C., 1826, On the supposed unicorn of the Himalayas: Philosophical Magazine and Journal, v. 68, p. 232234.Google Scholar
Azanza, B., and Morales, J., 1994, Tethytragus nov. gen. et Gentrytragus nov. gen.: deux nouveaux bovidés (Artiodactyla, Mammalia) du Miocène moyen, relations phylogénétiques des bovidés anté-vallésiens: Proceedings of the Koninklijke Akademie van Wetenschappen, v. 97, p. 249282.Google Scholar
Bärmann, E.V., and Rössner, G.E., 2011, Dental nomenclature in Ruminantia: towards a standard terminological framework: Mammalian Biology, v. 76, p. 762768, doi:10.1016/j.mambio.2011.07.002.CrossRefGoogle Scholar
Bibi, F., 2013, A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics: BMC Evolutionary Biology, v. 13, p. 166, doi:10.1186/1471-2148-13-166.CrossRefGoogle ScholarPubMed
Bibi, F., and Güleç, E.S., 2008, Bovidae (Mammalia: Artiodactyla) from the late Miocene of Sivas, Turkey: Journal of Vertebrate Paleontology, v. 28, p. 501519, doi:10.1671/0272-4634(2008)28[501:BMAFTL]2.0.CO;2.CrossRefGoogle Scholar
Bibi, F., Bukhsianidze, M., Gentry, A.W., Geraads, D., Kostopoulos, D., and Vrba, E.S., 2009, The fossil record and evolution of Bovidae: state of the field: Palaeontologia Electronica, v. 12, p. 110.Google Scholar
Blyth, E., 1840, Letter February 11: 1840 Proceedings of the Zoological Society of London, v. 1, p. 1119.Google Scholar
Bohlin, B., 1935a, Tsaidamotherium hedini, n. g., n. sp.: Geografiska Annaler, v. 71, p. 6674.CrossRefGoogle Scholar
Bohlin, B., 1935b, Cavicorner der Hipparion-Fauna Nord-Chinas: Palaeontologia Sinica, ser. C, v. 9, p. 1166.Google Scholar
Bohlin, B., 1937, Eine tertiäre Saugetier-Fauna aus Tsaidam: Palaeontologia Sinica, ser. C, v. 14, p. 1111.Google Scholar
Castelló, R.J., 2016, Bovids of the World: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives: Princeton, New Jersey, Princeton University Press, 664 p.CrossRefGoogle Scholar
Chen, G.F., and Zhang, Z.Q., 2009, Taxonomy and evolutionary process of Neogene Bovidae from China: Vertebrata PalAsiatica, v. 47, p. 265281.Google Scholar
Deng, T., and Ding, L., 2015, Paleo-altimetry reconstructions of the Tibetan Plateau: progress and contradictions: National Science Review, v. 93, p. 9295, doi:10.1093/nsr/nwv062.Google Scholar
Deng, T., Wang, X.M., Fortelius, M., Li, Q., Wang, Y., Tseng, Z.J., Takeuchi, G.T., Saylor, J.E., Säilä, L.K., and Xie, G.P., 2011, Out of Tibet: Pliocene wooly rhino suggests high-plateau origin of ice age megaherbivores: Science, v. 333, p. 12851288, doi:10.1126/science.1206594.CrossRefGoogle Scholar
Dmitrieva, E.L., and Serdyuk, N.V., 2011, Hippotraginae (Bovidae, Artiodactyla, Mammalia) from the late Miocene of Tuva: Paleontological Journal, v. 45, p. 665673, doi:10.1134/S0031030111060050.CrossRefGoogle Scholar
Dove, W.F., 1935, The physiology of horn growth: a study of the morphogenesis, interaction of tissues, and the evolutionary processes of a Mendelian recessive character by means of transplantation of tissues: The Journal of Experimental Zoology, v. 69, p. 347405.CrossRefGoogle Scholar
Geist, V., 1987, On the evolution of the Caprinae, in Lovari, S., ed., The Biology and Management of Mountain Ungulates: London, Croom Helm, p. 340.Google Scholar
Gentry, A.W., 1968, The extinct bovid genus Qurliqnoria Bohlin: Journal of Mammalogy, v. 49, p. 769.CrossRefGoogle Scholar
Gentry, A.W., 1971, The earliest goats and other antelopes from Samos Hipparion Fauna: Bulletin of the British Museum (Natural History), Geology, v. 20, p. 229296.Google Scholar
Gentry, A.W., 1992, The subfamilies and tribes of the family Bovidae: Mammal Review, v. 22, p. 132.CrossRefGoogle Scholar
Gentry, A.W., 2000, Caprinae and Hippotragini (Bovidae, Mammalia) in the upper Miocene, in Vbra, E.S., and Schaller, G.B., eds., Antelopes, Deer and Relatives: Fossil Record, Behavioral Ecology, Systematics and Conservation: New Haven, Connecticut, Yale University Press, p. 6583.Google Scholar
Gray, J.E., 1821, On the natural arrangement of vertebrose animals: London Medical Repository, v. 15, p. 296310.Google Scholar
Hassanin, A., Delsuc, F., Ropiquet, A., Hammer, C., Jansen van Vuuren, B., Matthee, C., Ruiz-Garcia, M., Catzeflis, F., Areskoug, V., Nguyen, T.T., and Couloux, A, 2012, Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes: Comptes Rendus Biologies, v. 335, p. 3250, doi:10.1016/j.crvi.2011.11.002.CrossRefGoogle Scholar
Hodgson, B.H., 1841, Classified catalogue of mammals of Nepal, corrected to end of 1840, first printed in 1832: Calcutta Journal of Natural History, v. 2, p. 212221.Google Scholar
Hodgson, B.H., 1846, Description of a new species of Tibetan antelope: Journal of the Asiatic Society of Bengal, v. 15, p. 334343.Google Scholar
Janis, C.M., and Scott, K.M., 1987, The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea: Amercan Museum Novitates, v. 2893, p. 185.Google Scholar
Kingdon, J., 1982, East African Mammals: An Atlas of Evolution in Africa, IIIC: London, Academic Press, 404 p.Google Scholar
Köhler, M., 1987, Boviden des türkischen Miozäns (Känozoikum und Braunkohlen der Türkei) : Paleontologia i Evolució, v. 21, p. 133246.Google Scholar
Kostopoulos, D.S., 2005, The Bovidae (Mammalia, Artiodactyla) from the late Miocene of Akkaşdağı, Turkey: Geodiversitas, v. 27, p. 747791.Google Scholar
Lartet, É., 1837, Notice sur les ossements fossiles des terrains tertiaires de Simorre, de Sansan, etc., et sur la découverte récente d'un emâchoire de singe fossile: Comptes Rendus Hebdomaires l'Academie de Sciences, v. 4, p. 1583.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 pGoogle Scholar
Major, C.I.F., 1891, Considérations nouvelles sur la faune des vertébrés du Miocène supérieur dans l’Île de Samos: Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, v. 113, p. 608610.Google Scholar
Owen, R., 1848, The Archetype and Homologies of the Vertebrate Skeleton: London, J. van Voorst, 203 p.CrossRefGoogle Scholar
Qiu, Z.X., Ye, J., and Jiang, Y.J., 1987, Some mammalian fossils of Bahe Stage from Wuzhong, Ningxia: Vertebrata PalAsiatica, v. 25, p. 4656.Google Scholar
Robinson, P., 1972, Pachytragus solignaci, a new species of caprine bovid from the late Miocene Beglia Formation of Tunisia: Notes du Service Géologique de Tunisie, v. 37, p. 7394.Google Scholar
Roger, O., 1904, Wirbeltierreste aus dem Obermiozän der bayrisch-schwäbischen Hochebene, V: Bericht des Naturwissenschaftlichen Vereins für Schwaben und Neuburg, Augsburg, v. 36, p. 119.Google Scholar
Ropiquet, A., and Hassanin, A., 2004, Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene: Journal of Zoological Systematics and Evolutionary Research, v. 43, p. 4960, doi:10.1111/j.1439-0469.2004.00290.x.CrossRefGoogle Scholar
Schlosser, M., 1904, Die fossiles Cavicornis von Samos: Beiträge zur Paläontologie und Geologie Österreich-Ungarn, v. 17, p. 21118.Google Scholar
Shen, X.H., Tian, Q.J., Ding, G.Y., Wei, K.B., Chen, Z.W., and Chai, C.Z., 2001, The late Cenozoic stratigraphic sequence and its implication to tectonic evolution, Hejiakouzi Area, Ningxia Hui Autonomous Region: Earthquake Research in China, v. 17, p. 156166.Google Scholar
Shi, Q.Q., 2014, New species of Tsaidamotherium (Bovidae, Artiodactyla) from China sheds new light on the skull morphology and systematics of the genus: Science China: Earth Science, v. 57, p. 258266, doi:10.1007/s11430-013-4722-2.Google Scholar
Smith, C.H., 1826–1827, The seventh order of the Mammalia: The Ruminantia, in Griffith, E., Smith, C.H., and Pidgeon, E., eds., The Animal Kingdom, the Class Mammalia, Arranged by the Baron Cuvier, with Specific Discriptions: London, Willian Clowes, Charing Cross, v. 4, p. 1498.Google Scholar
Thenius, E., 1979, Zur systematischen Stellung und verbreitung von Gazella stehlini aus dem Miozän Europas: Anzeiger der Österreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, v. 116, p. 913.Google Scholar
Wang, S.Q., Zong, L.Y., Yang, Q., Sun, B.Y., Li, Y., Shi, Q.Q., Yang, X.W., Ye, J., and Wu, W.Y., 2016, Biostratigraphic subdividing of the Neogene Dingjia'ergou mammalian fauna, Tongxin County, Ningxia Province, and its background for the uplift of the Tibetan Plateau: Quaternary Sciences, v. 36, p. 789809, doi:10.11928/j.issn.1001-7410.2016.0402.Google Scholar
Wang, X.M., Xie, G.P., Li, Q., Qiu, Z.D., Tseng, Z.J., Takeuchi, G.T., Wang, B.Y., Fortelius, M., Rosenström, F.A., Wahlquist, H., Downs, W.R., Zhang, C.F., and Wang, Y., 2011, Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin—reconciling classic vertebrate fossil localities with modern biostratigraphy: Vertebrata PalAsiatica, v. 49, p. 285310.Google Scholar
Wang, X.M., Li, Q., Xie, G.P., Saylor, J.E., Tseng, Z.J., Takeuchi, G.T., Deng, T., Wang, Y., Hou, S.K., Liu, J., Zhang, C.F., Wang, N., and Wu, F.X., 2013, Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 374, p. 8195, doi:10.1016/j.palaeo.2013.01.007.CrossRefGoogle Scholar
Wang, X.M., Xie, G.P., and Takeuchi, G., 2016, Out of Tibet: an early sheep from the Pliocene of Tibet, Protovis himalayensis, gen. et sp. nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep: Journal of Vertebrate Paleontology, v. 5, p. 112, doi:10.1018/02724634.2016.1169190.Google Scholar