Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T17:50:47.213Z Has data issue: false hasContentIssue false

Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China

Published online by Cambridge University Press:  14 July 2015

Ronald L. Parsley
Department of Geology, Tulane University, New Orleans, Louisiana 70118, Institute of Paleontology and Biomineralization, School of Resources and Environment, Guizhou University, Guiyang 550003, China,
Yuanlong Zhao
Department of Geology, Tulane University, New Orleans, Louisiana 70118, Institute of Paleontology and Biomineralization, School of Resources and Environment, Guizhou University, Guiyang 550003, China,


Long-stemmed eocrinoids are limited to two species in the basal Middle Cambrian Kaili Biota, which occupies the middle portion of the Kaili Formation, Taijiang County, Guizhou Province, China. the Kaili Biota contains preserved soft-bodied organisms shared with either the Chengjiang Fauna (Southwest China) or the Burgess Shale Fauna (British Columbia) or with both. Echinoderms are preserved as limonitic external molds that produce excellent latex casts. Sinoeocrinus lui Zhao et al., 1994 has a complex ontogenetic development, which is described in terms of morphology of holdfast, number of thecal plate circlets, addition and morphology of thecal pores, ambulacral arrangement, and number of brachioles relative to thecal height. Because of the complex ontogeny the following species are now seen to be synonymous with S. lui: lui. S. curtobrachiolus Zhao et al., 1994; S. lepidus Zhao et al., 1994; S. longus Zhao et al., 1994; S. minus Zhao et al., 1994; Paragogia globosa Zhao et al., 1994; and Curtoeocrinus guizhouensis Zhao et al., 1994. A second and rare eocrinoid of undetermined familial and ordinal placement, Balangicystis rotundus n. gen. and sp., has an unusually long holdfast and poreless thecal plates with prominent radial ridges. Sinoeocrinus lui and Balangicystis rotundus inhabited the outer shelf in disaerobic fine-grained shales and mudstones. Megascopic infauna in their community is not present.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Barrande, J. 1846. Notice Préliminaire sur le Système Silurien et les Trilobites de Bohême. Leipzig, 97 p.CrossRefGoogle Scholar
Barrande, J. 1887. Classe des Echinodermes. 1. Ordre des Cystidées. In Système Silurien du centre de la Bohême, 7(1). Leipzig and Praha. (Barrande's papers were privately published and printing was done in various cities; Barrande, 1887 was printed in Prague and Leipzig and the plates were lithographed in Paris and Prague. Current authors in the Czech Republic commonly list Prague and Paris without indicating a publisher.) Google Scholar
Broadhead, T. W. 1982. Reappraisal of class Eocrinoidea (Echinodermata), p. 125131. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference: Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Brower, J. C. 1999. A new pleurocystitid rhombifereran echinoderm from the Middle Ordovician Galena Group of northern Iowa and southern Minnesota. Journal of Paleontology, 73:129153.CrossRefGoogle Scholar
Durham, J. W. 1979. A Lower Cambrian eocrinoid. Journal of Paleontology, 52:195199.Google Scholar
Friedrich, W.-P. 1993. Systematik und Functionsmorphologie mittlekambrischer Cinta (Carpoidea, Echinodermata). Beringeria, 7:3190.Google Scholar
Guensburg, T. E., and Sprinkle, J. 2004. Origin and divergence of hard-substrate attachment structures in early echinoderms. Abstracts with Programs, Geological Society of America, 36(5):110.Google Scholar
Havlíček, V. 1998. Origin of the Lower Palaeozoic basins in the Barrandian area, p. 1617. In Chuláč, I., Havlíček, V., Kříž, J., Kukal, Z., and Storch, P. (eds.), Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague.Google Scholar
Hotchkiss, F. H. C. 1998. Discussion on pentamerism: The five-part pattern of Stromatocystites, Asterozoa, and Echinozoa, p. 3742. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Huang, Y.-Z., and Zhao, Y.-L. 1985. Discovery of Echinodermata from the Middle Cambrian Kaili Formation in Taijiang of Guizhou. Journal of the Guizhou Institute of Technology, 14(4):123. (In Chinese) Google Scholar
Hudson, G. H. 1911. Studies of some Early Siluric Pelmatozoa. Bulletin of the New York State Museum, 149:195258.Google Scholar
Hyman, L. H. 1955. The Invertebrates: Echinodermata, The Coelomate Bilateria. Volume IV. McGraw-Hill, New York, 763 p.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologischen Zeitschrift, 3(1):1128.Google Scholar
Lu, Y. 1963. Supplementary notes on the Cambrian stratigraphy of China. Acta Geologica Sinica, 43(4):317330. (In Chinese with English abstract) Google Scholar
Matthew, G. F. 1899. Studies on Cambrian faunas, no. 3: Upper Cambrian fauna of Mt. Stephen, British Columbia. Transactions of the Royal Society of Canada, series 2, 5:3966.Google Scholar
Meyer, D. 1971. The collagenous nature of problematical ligaments in crinoids (Echinodermata). International Journal on Life in Oceans and Coastal Waters, 9(3):235241.Google Scholar
Parsley, R. L. 1990. Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, ČSSR. Journal of Paleontology, 64:278293.CrossRefGoogle Scholar
Parsley, R. L. 1998. Community setting and functional morphology of Echinosphaerites infaustus (Fistuliporita: Echinodermata) from the Ordovician of Bohemia. Bulletin of the Czech Geological Survey, 73(3):253265.Google Scholar
Parsley, R. L. 1999. The Cincta (Homostelea) as blastozoans, p. 369375. In Carnevali, M. D. C. and Bonasoro, F. (eds.), Echinoderm Research 1998. Balkema Press, Rotterdam.Google Scholar
Parsley, R. L., and Prokop, R. L. 2001. Functional morphology and paleoecology of Middle Cambrian echinoderms from marginal Gondwana basins in Bohemia. Abstracts with Programs, Geological Society of America, 33(6):247.Google Scholar
Parsley, R. L., and Prokop, R. L. 2004. Functional morphology and paleoecology of some Middle Cambrian echinoderms from Marginal Gondwana basins in Bohemia. Bulletin of Geosciences, 79(3):147156.Google Scholar
Parsley, R. L., and Zhao, Y. 2002. Eocrinoids of the Middle Cambrian Kaili Fauna, Taijiang County, Gruzhou, China. Abstracts with Programs, Geological Society of America, 34(6):81.Google Scholar
Parsley, R. L., and Zhao, Y. 2004. Functional morphology of brachioles in gogiid and other Early and Middle Cambrian eocrinoids, p. 489–484. In Heinzeller, T. and Nebelsick, J. (eds.), Echinoderms München. Taylor and Francis Group, London.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of Echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Prokop, R. 1962. Akadocrinus nov. gen., a new crinoid from the Cambrian of Jince area. Sborník Ústředního Ústavu Geologického, 27:3139.Google Scholar
Robison, R. A. 1965. Middle Cambrian eocrinoids from western North America. Journal of Paleontology, 39:355364.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: Examples from four Utah Lagerstätten, p. 7798. In Simonetta, A. and Conway-Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press.Google Scholar
Rozhnov, S. V. 2002. Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the early Paleozoic. Paleontological Journal, 36 (supplementary issue 6):S525S674. (Translated from Russian) Google Scholar
Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27(3):431459.Google Scholar
Smith, A. B. 1990. Evolutionary diversification of echinoderms during the early Palaeozoic, p. 265286. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. The Systematics Association, Special Volume 42. Clarendon Press, Oxford.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young University Press Geology Studies, 23:2:6173.Google Scholar
Sprinkle, J., and Robison, R. A. 1978. Addendum to the subphylum Homalozoa, Ctenocystoids, p. T998T1002. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt. T. Echinodermata 2(3). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1963. Rhopalocystis destombesi n.g., n. sp. Eocrinoïde del'Ordovicien inférieur (Trémadocian supérior) du Sud marocain. Notes du service géologic du Maroc, 23:2544.Google Scholar
Ubaghs, G. 1968. Eocrinoidea, p. S455S495. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. S. Echinodermata 1(2). Geological Society of America and University of Kansas, Lawrence.Google Scholar
Walcott, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. Bulletin of the United States Geological Survey, 30:7271095.Google Scholar
Walcott, C. D. 1911. Middle Cambrian Annelids. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57:109144.Google Scholar
Walcott, C. D. 1912. Middle Cambrian Branchiopodia, Malacostraca, Trilobita and Mereostomata. Cambrian Geology and Paleontology II, Smithsonian Miscellaneous Collections, 57:145228.Google Scholar
Walcott, C. D. 1917. Cambrian Geology and Paleontology IV, Fauna of the Mount Whyte Formation. Smithsonian Miscellaneous Collections, 63:61114.Google Scholar
Wilbur, B. C. 2004. The tie that binds: Attachment structure homologies in Early Cambrian echinoderms. Abstracts with Programs, Geological Society of America, 36(5):521.Google Scholar
Yuan, J.-L., Zhao, Y.-L., Li, Y. H., and You, Z. 2002. The Miaobanbo Section, p. 1117. In Trilobite Fauna of the Kaili Formation (Uppermost Lower Cambrian–Lower Middle Cambrian) from Southeastern Guizhou, South China. Shanghai Science and Technology Press. (In Chinese) Google Scholar
Zhao, Y.-L., Huang, Y.-L., and Gong, X.-Y. 1994. A progress report on research on the early Middle Cambrian Kaili Biota, Guizhou, PRC. Acta Palaeontologica Sinica, 38(supplement):114.Google Scholar
Zhao, Y.-L., Huang, Y.-Z., and Gong, X.-Y. 1999. Echinoderm fossils of Kaili Fauna from Taijiang, Guizhou. Acta Palaeontologica Sinica, 33(3):305324.Google Scholar
Zhao, Y.-L., Yuan, J.-L., McCollum, L. B., Sundburg, F. A., Yang, R.-D., Guo, Q.-D., Zhu, L. J., and Yang, X.-L. 2001a. A potential GSSP for the Lower and Middle Cambrian boundary near Balang Village, Tajiang County, Guizhou Province, China. Acta Palaeontologica Sinica, 40(supplement 3):130142.Google Scholar
Zhao, Y.-L., Yang, J., Yuan, J., Zhu, M., Guo, Q., and Tai, T. 2001b. Cambrian stratigraphy at Balang, Guizhou Province, China: Candidate for a global unnamed series and stratotype section for the Taijiangian Stage, p. 189208. In Peng, S. et al. (eds.), Cambrian System of South China, Palaeoworld, no. 13. University of Science and Technology of China, Hefei.Google Scholar
Zhao, Y.-L., Yuan, J., Zhu, M., Yang, R., Guo, Q., Peng, J., and Yang, X. 2002. Progress and significance in research on the early Middle Cambrian Kaili biota, Guizhou Province, China. Progress in Natural Science, 12(9):649654.Google Scholar
Zhu, M.-Y., Erdtmann, B. D., and Zhao, Y.-L. 1999. Taphonomy and paleoecology of the early Middle Cambrian Kaili Lagerstätte in Guizhou, China. Acta Palaeontologica Sinica, 38(supplement):4757.Google Scholar