Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T02:13:10.021Z Has data issue: false hasContentIssue false

Leptotrichites resinatus new genus and species: A fossil sheathed bacterium in Alpine Cretaceous amber

Published online by Cambridge University Press:  20 May 2016

Alexander R. Schmidt*
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für ökologie, Dornburger Str. 159, D-07743 Jena, Germany
Ursula Schäfer
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für ökologie, Dornburger Str. 159, D-07743 Jena, Germany
*
aCurrent address: Humboldt-Universität zu Berlin, Museum für Naturkunde, Institut für Paläontologie, Invalidenstr. 43, D-10115 Berlin, Germany, <alexander.schmidt@museum.hu-berlin.de>

Abstract

Fungal hyphae, unicellular algae, and filiform prokaryotic inclusions are the most abundant microfossils of the Cretaceous amber of Schliersee (Bavaria, southern Germany). These prokaryotes are described as Leptotrichites resinatus new genus and species, and interpreted as sheathed bacteria with similarities to the extant genus Leptothrix Kützing, 1843. However, the micromorphological and microanalytical features of this new species do not correspond entirely with those of the modern sheathed bacteria. Previous interpretations of these inclusions as filiform cyanobacteria, algae, and fungi have to be revised. Together with their numerous syninclusions, mainly fossil ciliates, testaceans, and microalgae, these prokaryotes belonged to a Cenomanian limnetic microcenosis of water bodies, such as ponds close to the resin-producing trees. Actualistic paleontological experiments reveal how these soft-bodied microorganisms could have been embedded in resins.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkeley, M. J. 1848. On three species of mould detected by Dr. Thomas in the amber of East Prussia. Annals and Magazine of Natural History, series 2, 2:380383.CrossRefGoogle Scholar
Blunck, G. 1929. Bakterieneinschlüsse im Bernstein. Zentralblatt für Mineralogie, Geologie und Paläontologie, 11:554555.Google Scholar
Borzi, A. 1879. Note alla morfologia e biologia delle Alghe Ficocromacee. Nuovo Giornale Botanico Italiano, 11:347388.Google Scholar
Breton, G., Gauthier, C., and Vizcaino, D. 1999. Land and freshwater microflora on a sparnacian amber from the Corbiére (south France): first observations. Estudios del Museo de Ciencias Naturales de Alava, 14:161166.Google Scholar
Cano, R. J., and Borucki, M. K. 1995. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268:10601064.CrossRefGoogle ScholarPubMed
Cano, R. J., Borucki, M. K., Higby-Schweitzer, M., Poinar, H. N., Poinar, G. O. Jr., and Pollard, K. J. 1994. Bacillus DNA in fossil bees: an ancient symbiosis? Applied and Environmental Microbiology, 60:21642167.CrossRefGoogle ScholarPubMed
Caspary, R., and Klebs, R. 1907. Die Flora des Bernsteins und anderer fossiler Harze des ostpreußischen Tertiärs. Abhandlungen der Königlich-Preußischen Geologischen Landesanstalt, 4:1181.Google Scholar
Cohn, F. 1870. Über den Brunnenfaden (Crenothrix polyspora) mit Bemerkungen über die mikroskopische Analyse des Brunnenwassers. Beiträge zur Biologie der Pflanzen, 1:108131.Google Scholar
Cohn, F. 1872. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen, 1:127224.Google Scholar
Dietrich, H.-G. 1975. Zur Entstehung und Erhaltung von Bernstein-Lagerstätten–1: Allgemeine Aspekte. Neues Jahrbuch für Geologie und Paläontologie, 149:3972.Google Scholar
Dörfelt, H., and Schäfer, U. 1998. Fossile Pilze im Bernstein der alpischen Trias. Zeitschrift für Mykologie, 64:141151.Google Scholar
Dörfelt, H., and Schäfer, U. 2000. Palaeozygnema spiralis, ein Vertreter der Conjugatophyceae in mesozoischem Bernstein aus Bayern. Hoppea, Denkschriften der Regensburgischen Botanischen Gesellschaft, 61:785793.Google Scholar
Ehrenberg, C. G. 1832. Beiträge zur Kenntnis der Organisation der Infusorien und ihrer geographischen Verbreitung, besonders in Sibirien. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 1830:188.Google Scholar
Ehrenberg, C. G. 1833. Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinster Raumes. Abhandlungen der Königliche Akademie der Wissenschaften zu Berlin, 1833:149336.Google Scholar
Ehrenberg, C. G. 1838. Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss Verlag, Leipzig, 547 p.Google Scholar
Engler, A. 1883. Über die Pilz-Vegetation des weissen oder todten Grundes in der Kieler Bucht. Vierter Bericht der Comission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel für 1877 bis 1881, Abt. I:187193.Google Scholar
Foissner, W., Schönborn, W., Wright, A.-D. G., and Lynn, D. H. 1999. Further studies on fossilized ciliates (Protozoa, Ciliophora) from Triassic amber, p. 4552. In Tajovský, K. and Pil, V. (eds.), Soil Zoology in Central Europe. Proceedings of the 5th Central European Workshop on Soil Zoology held in České Budějovice, Czech Republic, 27–30 April 1999. Academy of Sciences of the Czech Republic, České Budějovice.Google Scholar
Galippe, M. V. 1920. Recherches sur la résistance des microzymas á l'action du temps et sur leur survivance dans l'ambre. Comptes rendus hebdomadaires des séances de l' Académie des Sciences, Paris, 170:856858.Google Scholar
Gaupp, R. 1982. Sedimentationsgeschichte und Paläotektonik der kalkalpinen Mittelkreide (Allgäu, Tirol, Voralberg). Zitteliana, 8:3372.Google Scholar
Gaupp, R., and Batten, D. J. 1985. Maturation of organic matter in Cretaceous strata of the Northern Calcareous Alps. Neues Jahrbuch für Geologie und Paläontologie, 3/1985:157175.CrossRefGoogle Scholar
Geitler, L. 1930-1932. Cyanophyceae, p. 11196. In Kolkwitz, R. (ed.), Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Vol. 14. Akademische Verlagsgesellschaft, Leipzig.Google Scholar
Ghirose, W. C., and Ehrlich, H. L. 1992. Microbial biomineralization of iron and manganese, p. 7599. In Skinner, H. C. W. and Fitzpatrick, R. W. (eds.), Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments. Catena Verlag, Cremlingen-Destedt.Google Scholar
Gothan, W., and Weyland, H. 1964. Lehrbuch der Paläobotanik. Akademie Verlag, Berlin, 594 p.Google Scholar
Greenblatt, C. L., Baum, J., Klein, B. Y., Nachson, S., and Cano, R. J. In press. Micrococcus luteus—survival in amber. Microbial Ecology.Google Scholar
Greenblatt, C. L., Davis, A., Clement, B. G., Kitts, C. L., Cox, T., and Cano, R. J. 1999. Diversity of microorganisms isolated from amber. Microbial Ecology, 38:5868.CrossRefGoogle ScholarPubMed
Grüss, J. 1931. Die Urform des Anthomyces reukaufii und andere Einschlüsse in den Bernstein durch Insekten verschleppt. Wochenschrift für Brauerei, 48:6368.Google Scholar
Häusler, J. 1982. Schizomycetes, p. 247296. In Ettl, H., Gerloff, J., and Heynig, H. (eds.), Süßwasserflora von Mitteleuropa. Vol. 20. Gustav Fischer Verlag, Jena.Google Scholar
Henwood, A. 1993. Recent plant resins and the taphonomy of organisms in amber: a review. Modern Geology, 19:3559.Google Scholar
Hirsch, P. 1989a. Sheathed bacteria—genus Clonothrix , p. 20082009. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Hirsch, P. 1989b. Sheathed bacteria—genus Crenothrix , p. 20062008. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Hirsch, P. 1989c. Sheathed bacteria—genus Lieskeella , p. 2005. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Hirsch, P. 1989d. Sheathed bacteria—genus Phragmidiothrix , p. 2005. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Kalmbach, S., Manz, W., Wecke, J., and Szewzyk, U. 1999. Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. International Journal of Systematic Bacteriology, 49:769777.Google ScholarPubMed
Karkhanis, S. N. 1976. Fossil iron bacteria may be preserved in Precambrian ferroan carbonate. Nature, 261:406407.CrossRefGoogle Scholar
Kersters, K., de Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E. 2002. Introduction to the Proteobacteria. In Dworkin, M. (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Release 3.12. Springer-Verlag, New York, www.prokaryotes.com.Google Scholar
Krumbiegel, G., and Krumbiegel, B. 1996. Pflanzliche und tierische Organismen im Bernstein—Biologische Indikatoren der Erdgeschichte, p. 4758. In Ganzelewski, M. and Slotta, R. (eds.), Bernstein—Tränen der Götter. Verlag Glückauf, Essen.Google Scholar
Kützing, F. T. 1833. Beitrag zur Kenntnis über die Entstehung und Metamorphose der niederen vegetalischen Organismen, nebst einer systematischen Zusammensetzung der hierher gehörigen niederen Algenformen. Linnaea, 8:335387.Google Scholar
Kützing, F. T. 1843. Phycologia Generalis. F. A. Brockhaus, Leipzig, 458 p.Google Scholar
Lambert, L. H., Cox, T., Mitchell, K., Rosselló-Mora, R. A., Del Cueto, C., Dodge, D. E., Orkland, P., and Cano, R. J. 1998. Staphylococcus succinus sp. nov., isolated from Dominican amber. International Journal of Systematic Bacteriology, 48:511518.CrossRefGoogle ScholarPubMed
Linnaeus, C. 1753. Species Plantarum. Holmiae, Stockholm, 1200 p.Google Scholar
Malmquist, A., Welander, T., Moore, E., Ternstrom, A., Molin, G., and Stenstrom, I. 1994. Ideonella dechloratans, gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Systematic and Applied Microbiology, 17:5864.CrossRefGoogle Scholar
Martius, C. F. P. 1817. Flora Cryptogamica Erlangensis. Sistens Vegetabilia e Classe Ultima Linn. in Agro Erlangensi Hucusque Detecta. J.L. Schrag, Nürnberg, 512 p.Google Scholar
Mulder, E. G. 1989a. Sheathed bacteria—genus Haliscomenobacter , p. 20032004. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Mulder, E. G. 1989b. Sheathed bacteria—genus Leptothrix , p. 19982003. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Mulder, E. G. 1989c. Sheathed bacteria—genus Sphaerotilus , p. 19941998. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams and Wilkins, Baltimore.Google Scholar
Mulder, E. G., and Deinema, M. H. 1992. The sheathed bacteria, p. 26122624. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds.), The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Vol. 3. Springer Verlag, New York.Google Scholar
Perfiliev, B. V. 1926. Novye dannye o roli mikrobov v rudoobrazovanii. Izvestija Geologiceskogo Komiteta, 45:795.Google Scholar
Pflaumann, U., and Stephan, W. 1968. Erläuterungen zur Geologischen Karte von Bayern 1:25000, Blatt Nr. 8237 Miesbach. Bayerisches Geologisches Landesamt, München, 415 p.Google Scholar
Poinar, G. O. Jr. 1992. Life in Amber. Stanford University Press, Stanford, California, 350 p.CrossRefGoogle Scholar
Poinar, G. O. Jr., and Poinar, R. 1994. The Quest for Life in Amber. Addison-Wesley, Reading, Massachusetts, 219 p.Google Scholar
Poinar, G. O. Jr., Waggoner, B. M., and Bauer, U.-Ch. 1993a. Terrestrial soft-bodied protists and other microorganisms in Triassic amber. Science, 259:222224.CrossRefGoogle ScholarPubMed
Poinar, G. O. Jr., Waggoner, B. M., and Bauer, U.-Ch. 1993b. Description and palaeoecology of a Triassic amoeba. Naturwissenschaften, 80:566568.CrossRefGoogle Scholar
Rikkinen, J., and Poinar, G. O. Jr. 2000. A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous fungi. Mycological Research, 104:715.CrossRefGoogle Scholar
Roze, E. 1896. Le Clonothrix, un nouveau type genérique de Cyanophycées. Journal Botanique, 10:325330.Google Scholar
Schlee, D. 1990. Das Bernstein-Kabinett, Begleitheft zur Bernsteinausstellung im Museum am Löwentor, Stuttgart. Stuttgarter Beiträge zur Naturkunde, series C, 28:1100.Google Scholar
Schmidt, A. R., Schönborn, W., and Schäfer, U. 2004. Diverse fossil amoebae in German Mesozoic amber. Palaeontology, 47:185197.CrossRefGoogle Scholar
Schmidt, A. R., von Eynatten, H., and Wagreich, M. 2001. The Mesozoic amber of Schliersee (southern Germany) is Cretaceous in age. Cretaceous Research, 22:423428.CrossRefGoogle Scholar
Schmidt, A. R., Dörfelt, H., Schönborn, W., and Zimmermann-Timm, H. 2002. Mikrofossilien im Bernstein-Neue Einblicke in limnisch-terrestrische Mikrozönosen des späten Mesozoikums. Deutsche Gesellschaft für Limnologie—Tagungsbericht 2001 (Kiel), Tutzing 2002, p. 852857.Google Scholar
Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L., and Schäfer, U. 1999. A fossilized microcenosis in Triassic amber. Journal of Eukaryotic Microbiology, 46:571584.CrossRefGoogle Scholar
Schubert, K. 1965. Chemisch-physikalische Prozesse im Innern des Baltischen Bernsteins. Natur und Museum, 95:261270.Google Scholar
Schwers, H. 1912. Megalothrix discophora, eine neue Eisenbakterie. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, 33:273276.Google Scholar
Smith, J. 1894. On the discovery of fossil microscopic plants in the fossil amber of the Ayrshire coal-field. Transactions of the Geological Society of Glasgow, 30:318323.Google Scholar
Spring, S. 2002. The genera Leptothrix and Sphaerotilus. In Dworkin, M. (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Release 3.9, Springer-Verlag, New York, www.prokaryotes.com.Google Scholar
Spring, S., Kämpfer, P., Ludwig, W., and Schleifer, K. H. 1996. Polyphasic characterization of the genus Leptothrix. New description of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Systematic and Applied Microbiology, 19:634643.CrossRefGoogle Scholar
Stackebrandt, E., Murray, R. G. E., and Trüper, H. G. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” International Journal of Systematic Bacteriology, 38:321325.CrossRefGoogle Scholar
Stein, S. F. N. 1859. Über die aus eigener Untersuchung bekannt gewordenen Süsswasser-Rhizopoden. Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften, 10:4143.Google Scholar
Suyama, T., Shigematsu, T., Takaichi, S., Nodasaka, Y., Fujikawa, S., Hosoya, H., Tokiwa, Y., Kanagawa, T., and Hanada, S. 1999. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β -subclass of the Proteobacteria. International Journal of Systematic Bacteriology, 49:449457.Google Scholar
Thunberg, C. P. 1784. Flora Japonica. Müller, Leipzig, 347 p.Google Scholar
Ting, W. S., and Nissenbaum, A. 1986. Fungi in Lower Cretaceous Amber from Israel. Special Publication by the Exploration and Development Research Center, Chinese Petroleum Corporation, Miaoli, Taiwan, 27 p.Google Scholar
van Veen, W. L., van der Kooij, D., Geuze, E. C. W. A., and Van der Vlies, A. W. 1973. Investigations on the sheathed bacterium Haliscomenobacter hydrossis. Antonie van Leeuwenhoek Journal of Microbiology and Serology, 39:207216.CrossRefGoogle ScholarPubMed
von Eynatten, H., and Gaupp, R. 1999. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124:81111.CrossRefGoogle Scholar
Waggoner, B. M. 1993. Fossil actinomycetes and other bacteria in Eocene amber from Washington State, USA. Tertiary Research, 14:155160.Google Scholar
Waggoner, B. M. 1994a. An aquatic microfossil assemblage from Cenomanian amber of France. Lethaia, 27:7784.CrossRefGoogle Scholar
Waggoner, B. M. 1994b. Fossil microorganisms from Upper Cretaceous amber of Mississippi. Review of Palaeobotany and Palynology, 80:7584.CrossRefGoogle Scholar
Waggoner, B. M. 1994c. Fossil actinomycete in Eocene-Oligocene Dominican amber. Journal of Paleontology, 68:398–341.CrossRefGoogle Scholar
Waggoner, B. M. 1996. Bacteria and protists from Middle Cretaceous amber of Ellsworth County, Kansas. PaleoBios, 17:2026.Google Scholar
Willems, A., Gillis, M., and De Ley, J. 1991. Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus . International Journal of Systematic Bacteriology, 41:6573.CrossRefGoogle Scholar
Woese, C. R., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87:45764579.CrossRefGoogle ScholarPubMed