Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-sdmrd Total loading time: 0.276 Render date: 2021-06-24T13:39:44.378Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA

Published online by Cambridge University Press:  15 June 2016

David J. Cicimurri
Affiliation:
South Carolina State Museum, 301 Gervais Street, Columbia, SC 29201, USA 〈dave.cicimurri@scmuseum.org〉, 〈karin@gforcecable.com〉
James L. Knight
Affiliation:
South Carolina State Museum, 301 Gervais Street, Columbia, SC 29201, USA 〈dave.cicimurri@scmuseum.org〉, 〈karin@gforcecable.com〉
Jean M. Self-Trail
Affiliation:
United States Geological Survey, 926A National Center, Reston, VA 20192, USA 〈jstrail@usgs.gov〉
Sandy M. Ebersole
Affiliation:
Alabama Geological Survey, P.O. Box 869999, Tuscaloosa, AL 35486, USA 〈sebersole@gsa.state.al.us〉

Abstract

Heavily tuberculated glyptosaur osteoderms were collected in an active limestone quarry in northern Berkeley County, South Carolina. The osteoderms are part of a highly diverse late Paleocene vertebrate assemblage that consists of marine, terrestrial, fluvial, and/or brackish water taxa, including chondrichthyan and osteichthyan fish, turtles (chelonioid, trionychid, pelomedusid, emydid), crocodilians, palaeopheid snakes, and a mammal. Calcareous nannofossils indicate that the fossiliferous deposit accumulated within subzone NP9a of the Thanetian Stage (late Paleocene, upper part of Clarkforkian North American Land Mammal Age [NALMA]) and is therefore temporally equivalent to the Chicora Member of the Williamsburg Formation. The composition of the paleofauna indicates that the fossiliferous deposit accumulated in a marginal marine setting that was influenced by fluvial processes (estuarine or deltaic).

The discovery of South Carolina osteoderms is significant because they expand the late Paleocene geographic range of glyptosaurines eastward from the US midcontinent to the Atlantic Coastal Plain and provide one of the few North American records of these lizards inhabiting coastal habitats. This discovery also brings to light a possibility that post-Paleocene expansion of this group into Europe occurred via northeastward migration along the Atlantic coast of North America.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Agassiz, L., 1833–1843, Recherches sur les poissons fossils: Neuchâtel, Petitpierre, 422 p.Google Scholar
Albright, L.B., 1994, Lower vertebrates from an Arikareean (earliest Miocene) fauna near the Toledo Bend Dam, Newton County, Texas: Journal of Paleontology, v. 68, p. 11311145.CrossRefGoogle Scholar
Aubry, M.-P., 1999, Late Paleocene–early Eocene sedimentary history in western Cuba: Implications for the LPTM and for regional tectonic history: Micropaleontology, v. 45, p. 518.CrossRefGoogle Scholar
Augé, M.L., 2003, La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France): Geodiversitas, v. 25, p. 539574.Google Scholar
Augé, M.L., 2005, Évolution des lézards du Paléogène en Europe: Memoires du Museum National d’Histoire Naturelle, no. 192, 369 p.Google Scholar
Augé, M.L., and Smith, R., 2009, An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition: Zoological Journal of the Linnean Society, v. 155, p. 148170.CrossRefGoogle Scholar
Augé, M.L., and Sullivan, R.M., 2006, A new genus, Paraplacosauriops (Squamata, Anguidae, Glyptosaurinae), from the Eocene of France: Journal of Vertebrate Paleontology, v. 26, p. 133137.CrossRefGoogle Scholar
Baldwin, W.E., Morton, R.A., Denny, J.F., Dadisman, S.V., Schwab, W.C., Gayes, P.T., and Driscoll, N.W., 2004, Maps showing the stratigraphic framework of South Carolina’s Long Bay from Little River to Winyah Bay: US Geological Survey Open-File Report 2004-1013, 28 p.Google Scholar
Bartels, W.S., 1983, A transitional Paleocene-Eocene reptile fauna from the Bighorn Basin, Wyoming: Herpetologica, v. 39, p. 359374.Google Scholar
Bolet, A., and Evans, S.E., 2013, Lizards and amphisbaenians (Reptilia, Squamata) from the late Eocene of Sossis, (Catalonia, Spain): Palaeontologica Electronica, 16.1.8A, 16 p., http://palaeo-electronica.org/content/pe-16-1-2013-table-of-contents.Google Scholar
Bown, P.R., and Dunkley Jones, T., 2006, New Paleogene calcareous nannofossil taxa from coatal Tanzania: Tanzania drilling project sites 11 to 14: Journal of Nannoplankton Research, v. 28, p. 1734.Google Scholar
Boyd, D.W., and Lillegraven, J.A., 2011, Persistence of the Western Interior Seaway: Historical background and significance of ichnogenus Rhizocorallium in Paleocene strata, south-central Wyoming: Rocky Mountain Geology, v. 46, p. 4369.CrossRefGoogle Scholar
Bramlette, M.N., and Ridel, W.R., 1954, Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores: Journal of Paleontology, v. 28, p. 385403.Google Scholar
Bukry, D., 1971, Discoaster evolutionary trends: Micropaleontology, v. 17, p. 4352.CrossRefGoogle Scholar
Bybell, L.M., and Self-Trail, J., 1995, Evolutionary, biostratigraphic and taxonomic study of calcareous nannofossils from a continuous Paleocene-Eocene boundary section in New Jersey: US Geological Survey Professional Paper 1554, p. 1–36.Google Scholar
Cappetta, H., 1982, Revision de Cestracion duponti Winkler, 1874 (Selachii, Batomorphii) du Bruxellien de Woluwe-Saint-Lambert (Eocene Moyen de Belgique): Contributions to Tertiary and Quaternary Geology, v. 19, p. 113125.Google Scholar
Case, G.R., 1994a, Fossil fish remains from the late Paleocene Tuscahoma and early Eocene Bashi formations of Meridian, Lauderdale County, Mississippi. Part I—Selachians: Palaeontographica Abteilung A, v. 230, p. 97138.Google Scholar
Case, G.R., 1994b, Fossil fish remains from the late Paleocene Tuscahoma and early Eocene Bashi formations of Meridian, Lauderdale County, Mississippi: Part II—Teleosteans: Palaeontographica Abteilung A, v. 230, p. 139153.Google Scholar
Case, G.R., Cook, T.D., and Wilson, M.V.H., 2011, A new genus and species of fossil myliobatoid ray from the Fishburne Formation (lower Eocene/Ypresian) of Berkeley County, South Carolina, USA: Historical Biology, v. 23, p. 16.CrossRefGoogle Scholar
Casier, E., 1946, La faune ichthyologique de l’Ypresien de la Belgique: Memoires du Musée Royal d’Histoire Naturelle de Belgique, no. 104, 267 p.Google Scholar
Casier, E., 1950, Contributions a l’Etude des Poissons Fossiles de la Belgique. IX. La faune des formations dites “paniseliennes”: Bulletin du Musée Royale de Sciences Naturelles de Belgique, v. 26, p. 152.Google Scholar
Casier, E., 1966, Faune Ichthyologique du London Clay, London, British Museum (Natural History), 496 p.Google Scholar
Casier, E., 1967, Le Landénien de Dormaal (Brabant) et sa faune ichthyologique: Memoires de Musée Royal d’Histoire Naturelle de Belgique, no. 156, 42 p.Google Scholar
Cicimurri, D.J., 2010, On the dentition of Meridiania convexa Case (Myliobatoidea), an extinct early Eocene ray from the United States: Cainozoic Research, v. 7, p. 99107.Google Scholar
Cicimurri, D.J., and Knight, J.L., 2009, New record of an extinct fish, Fisherichthys folmeri Weems (Osteichthyes), from the lower Eocene of Berkeley County, South Carolina, USA: PaleoBios, v. 29, p. 2428.Google Scholar
Cleaves, E.T., Edwards, J. Jr., and Glaser, J.D., 1968, Geologic map of Maryland: Maryland Geological Survey, scale 1:250,000.Google Scholar
Colquhoun, D.J., and Muthig, M.G., 1991, Stratigraphy and structure of the Paleocene and lower Eocene Black Mingo Group, South Carolina, in Horton, J.W., Jr., and Zullo, V.A., eds., The Geology of the Carolinas. Carolina Geological Society 50th anniversary volume, Knoxville, University of Tennessee Press, p. 241250.Google Scholar
Cope, E.D., 1873, Synopsis of new Vertebrata from the Tertiary of Colorado: US Geological Survey of the Territories, seventh annual report, p. 16–19.Google Scholar
Douglass, E., 1903, New vertebrates from the Montana Territory: Annals of the Carnegie Museum, v. 2, p. 145199.Google Scholar
Drake, A.A. Jr., Volkert, R.A., Monteverde, D.H., Herman, G.C., Houghton, H.F., Parker, R.A., and Dalton, R.F., 1996, Bedrock geology of northern New Jersey: US Geological Survey Map Investigations I-2540-A, scale 1:100,000, 2 sheets.Google Scholar
Eberle, J.J., and Greenwood, D.R., 2012, Life at the top of the greenhouse Eocene world—A review of the Eocene flora and vertebrate fauna from Canada’s high arctic: Geological Society of America Bulletin, v. 124, p. 323.CrossRefGoogle Scholar
Edwards, L.E., Gohn, G.S., Bybell, L.M., Chirico, P.G., Christopher, R.A., Frederiksen, N.O., Prowell, D.C., Self-Trail, J.M., and Weems, R.E., 2000, Supplement to the preliminary stratigraphic database for subsurface sediments of Dorchester County, South Carolina: US Geological Survey Open-File Report 00-049-B, 44 p.Google Scholar
Estes, R., 1963, Early Miocene salamanders and lizards from Florida: Quarterly Journal of the Florida Academy of Sciences, v. 26, p. 234256.Google Scholar
Estes, R., 1976, Middle Paleocene lower vertebrates from the Tongue River Formation, southeastern Montana: Journal of Paleontology, v. 50, p. 500520.Google Scholar
Estes, R., 1983, The fossil record and early distribution of lizards, in Rhodin, A.G.J., and Miyata, K., eds., Advances in herpetology and evolutionary biology. Essays in honor of Ernest E. Williams, Cambridge, MA, Museum of Comparative Zoology, Harvard University, p. 365398.Google Scholar
Estes, R., and Hutchinson, J.H., 1980, Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 30, p. 325347.CrossRefGoogle Scholar
Fürbinger, M., 1900, Zur vergleichenden Anatomie des Brustschulterapparates und der Schultermuskeln: Jenaische Zeitschrift, v. 34, p. 215718.Google Scholar
Gauthier, J.A., 1982, Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea: Rocky Mountain Geology, v. 21, p. 754.Google Scholar
Gildersleeve, B., 1942, Eocene of Virginia: Virginia Geological Survey Bulletin, v. 57, 43 p.Google Scholar
Gilmore, C.W., 1928, Fossil lizards of North America: Memoirs of the National Academy of Science, v. 22, 201 p.Google Scholar
Gohn, G.S., Higgins, B.B., Smith, C.C., and Owens, J.P., 1977, Lithostratigraphy of the Deep Corehole (Clubhouse Crossroads Corehole 1) near Charleston, South Carolina, in D.W. Rankin, ed., Studies Related to the Charleston, South Carolina, Earthquake of 1886—A Preliminary Report: US Geological Survey Professional Paper 1028, p. 59–70.Google Scholar
Gray, J., 1825, A synopsis of the genera of reptiles and amphibia, with a description of some new species: Annals of Philosophy (new series), v. 10, p. 193217.Google Scholar
Gunnell, G.F., Bartels, W.S., Gingerich, P.D., and Torres, V., 1992, Wapiti Valley faunas: Early and middle Eocene fossil vertebrates from the north fork of the Shoshone River, Park County, Wyoming: Contributions from the Museum of Paleontology, University of Michigan, v. 28, p. 247287.Google Scholar
Harris, W.B., and Zullo, V.A., 1991, Eocene and Oligocene stratigraphy of the Outer Coastal Plain, in Horton, J.W., Jr., and Zullo, V.A., eds., The Geology of the Carolinas. Carolina Geological Society 50th anniversary volume: Knoxville, University of Tennessee Press, p. 251–262.Google Scholar
Harris, W.B., Zullo, V.A., and Laws, R.A., 1993, Sequence stratigraphy of the onshore Paleogene, southeastern Atlantic Coastal Plain, U.S.A., in Posamentier, H.W., others, eds., Sequence Stratigraphy and Facies Associations: International Association of Sedimentologists, Special Publication, v. 18, p. 537561.Google Scholar
Hazel, J.E., et al. 1977, Biostratigraphy of the Deep Corehole (Clubhouse Crossroads Corehole 1) near Charleston, South Carolina, in Rankin, D.W. ed., Studies Related to the Charleston, South Carolina, Earthquake of 1886—A Preliminary Report: US Geological Survey Professional Paper 1028, p. 71–90.Google Scholar
Hoffstetter, R., 1962, Additions a la faune reptilienne de l’Eocène superieur de Mormont-Saint-Loup (Suisse): Bulletin de la Société Géologique de France, v. 7, p. 149157.Google Scholar
Holman, J.A., 1976, A new Peltosaurus (Reptilia, Sauria, Anguidae) from the upper Miocene of Nebraska: Journal of Herpetology, v. 10, p. 4144.CrossRefGoogle Scholar
Holman, J.A., 1998, Pleistocene Amphibians and Reptiles in Britain and Europe, New York, Oxford University Press, 258 p.Google Scholar
Hooker, J.J., 2007, A new microchoerine omomyid (Primates, Mammalia) from the English early Eocene and its paleobiological implications: Palaeontology, v. 50, p. 739756.CrossRefGoogle Scholar
Horton, J. W., and Dicken, C. L., 2001, Preliminary geologic map of the Appalachian Piedmont and Blue Ridge, South Carolina Segment: US Geological Survey Open-File Report 01-298, scale 1:500,000, CD.Google Scholar
Houser, B.B., 1985, Magadi-type chert, indicator of a lacustrine environment in the middle Eocene McBean Formation, South Carolina: Southeastern Geology, v. 24, p. 185197.Google Scholar
Hutchinson, J.H., and Weems, R.E., 1998, Paleocene turtle remains from South Carolina, in Sanders, A.E., ed., Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA, Transactions of the American Philosophical Society, v. 88, p. 165195.Google Scholar
Jaekel, O.M., 1894, Die Eocanen Selachier vom Monte Bolca: Ein beitrag zur Morphogenie der Wirbelthiere, Berlin, Deutsche Akademie der Wissenschaften zu Berlin.CrossRefGoogle Scholar
Kent, B.W., 1999a, Sharks from the Fisher/Sullivan site, in Weems, R.E., and Grimsley, G.J., eds., Early Eocene Vertebrates and Plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia, Virginia Division of Mineral Resources Publication, v. 152, p. 1137.Google Scholar
Kent, B.W., 1999b, Rays from the Fisher/Sullivan site, in Weems, R.E., and Grimsley, G.J., eds., Early Eocene Vertebrates and Plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia, Virginia Division of Mineral Resources Publication, v. 152, p. 3951.Google Scholar
Klembara, J., and Green, B., 2010, Anguimorph lizards (Squamata, Anguimorpha) from the middle and late Eocene of the Hampshire Basin of southern England: Journal of Systematic Paleontology, v. 8, p. 97129.CrossRefGoogle Scholar
Knight, J.L., Cicimurri, D.J., and Purdy, R.W., 2007, New western hemisphere occurrences of Schizorhiza Weiler, 1930 and Eotorpedo White, 1934 (Chondrichthyes, Batomorphii): Paludicola, v. 6, p. 8793.Google Scholar
Kuhn, O., 1940, Die Placosauriden und Anguiden aus dem Mittleren Eozän des Geiseltales: Nova Acta Leopoldina, v. 8, p. 461486.Google Scholar
Lawton, D.E. et al. 1976, Geologic map of Georgia: Georgia Geological Survey, scale 1:500,000.Google Scholar
Leriche, M., 1905, Les poissons tertiaires de la Belgique, II: Les poissons éocènes: Mémoires du Musée Royal d’Histoire Naturelle de Belgique, v. 3, p. 49228.Google Scholar
Leriche, M., 1908, Note sur des poissons paléocènes et éocènes des environs de Reims: Annales de la Société Géologique du Nord, v. 37, p. 229265.Google Scholar
Leriche, M., 1922, Les poissons Paléocènes et Éocènes du Bassin de Paris: Bulletin de la Société Géologique de France, v. 22, p. 177200.Google Scholar
Lillegraven, J.A., 1970, Stratigraphy, structure, and vertebrate fossils of the Oligocene Brule Formation, Slim Buttes, northwestern South Dakota: Geological Society of America Bulletin, v. 81, p. 831850.CrossRefGoogle Scholar
Lucas, S.G., Sullivan, R.M., and Logan, T.R., 1983, Glyptosaurine lizard from Eocene Baca Formation, south-central New Mexico: New Mexico Geology, v. 5, p. 7778.Google Scholar
Maddox, D., and Wall, W.P., 1998, A systematic review of the fossil lizards and snakes (Squamata) from the White River Group of Badlands National Park: National Park Service Paleontological Research, v. 3, p. 47.Google Scholar
Marsh, O.C., 1871, Notice of some new fossil reptiles from the Cretaceous and Tertiary formations: American Journal of Science, v. 1, p. 447459.CrossRefGoogle Scholar
Martini, E., 1971, Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Farinacci, A., ed., Proceedings of the Second Planktonic Conference, Rome, Edizioni Tecnoscienza, v. 2, p. 739785.Google Scholar
McDowel, S., and Bogert, C., 1954, The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards: Bulletin of the American Museum of Natural History, v. 105, p. 1142.Google Scholar
McKenna, M.C., 1975, Fossil mammals and early Atlantic land continuity: Annals of the Missouri Botanical Garden, v. 62, p. 335353.CrossRefGoogle Scholar
Meszoely, C.A.M., 1970, North American fossil anguid lizards: Bulletin of the Museum of Camparative Zoology, Harvard University, v. 139, p. 87149.Google Scholar
Meszoely, C.A.M., Estes, R., and Haubold, H., 1978, Eocene anguid lizards from Europe and a revision of the genus Xestops: Herpetologica, v. 34, p. 156166.Google Scholar
Miller, K.G., Browning, J.V., Pekar, S.F., and Sugarman, P.J., 1997, Cenozoic evolution of the New Jersey Coastal Plain: Changes in sea level, tectonics, and sediment supply, in Miller, K.G. and Snyder, S.W., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 150X, p. 361–373.Google Scholar
Newell, W.L., Prowell, D.C., Krantz, D., Powars, D., Mixon, R., Weems, R., Stone, B., and Willard, D., 2007, Surficial geology and geomorphology of the Atlantic Coastal Plain, in Dicken, C.L., Nicholson, S.W., Horton, J.D., Foose, M.P., and Mueller, J.A.L., eds., Preliminary integrated geologic map databases for the United States: U.S. Geological Survey Open-File Report 2005-1323.Google Scholar
Nystrom, P.G. Jr., Willoughby, R.H., and Price, L.K., 1991, Cretaceous and Tertiary stratigraphy of the Upper Coastal Plain, South Carolina, in Horton, J.W., Jr., and Zullo, V.A., eds., The Geology of the Carolinas, Carolina Geological Society 50th Anniversary Volume, Knoxville, University of Tennessee Press, p. 221240.Google Scholar
Purdy, R.W., 1998, Chondrichthyan fishes from the Paleocene of South Carolina, in Sanders, A.E., ed., Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA, Transactions of the American Philosophical Society, v. 88, p. 122146.Google Scholar
Rage, J.-C., and Augé, M., 2003, Amphibians and squamate reptiles from the lower Eocene of Silveirinha (Portugal): Ciéncias de Terra, v. 15, p. 103116.Google Scholar
Rage, J.-C., and Augé, M., 2010, Squamate reptiles from the middle Eocene of Lissieu (France): A landmark in the middle Eocene of Europe: Geobios, v. 43, p. 253268.Google Scholar
Rhodes, T.S., and Conrad, S.G., 1985, Geologic map of North Carolina: Compiled by Brown, P.M., Parker, J.M., III, et al., and in association with the State Geologic Map Advisory Committee, Department of Natural Resources and Community Development, Division of Land Resources, and the North Carolina Geological Survey, scale 1:500,000.Google Scholar
Scholle, P. A., 1979, Geological studies of the COST GE-1 Well, United States South Atlantic Outer Continental Shelf area: United States Geological Survey Circular, v. 800, 114 p.Google Scholar
Self-Trail, J.M., Powars, D.S., Watkins, D.K., and Wandless, G.A., 2012, Calcareous nannofossil assemblage changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting: Marine Micropaleontology, v. 92–93, p. 6180.CrossRefGoogle Scholar
Smith, K.T., 2006, A diverse new assemblage of late Eocene squamates from the Chadron formation of North Dakota, USA: Palaeontographica Electronica, 9.2.5A, 44 p., http://palaeo-electronica.org/2006_2/dakota/dakota.pdf.Google Scholar
Smith, K.T., 2009, A new lizard assemblage from the earliest Eocene (Zone Wa0) of the Bighorn Basin, Wyoming, USA: Biogeography during the warmest interval of the Cenozoic: Journal of Systematic Paleontology, v. 7, p. 299358.Google Scholar
Spoljaric, N., and Jordan, R.R., 1966, Generalized geologic map of Delaware SP4. State of Delaware: Delaware Geological Survey, scale 1:300,000.Google Scholar
Stradner, H., 1963, New contributions to Mesozoic stratigraphy by means of nannofosils: Proceedings of the Sixth World Petroleum Congress, Paper 4, p. 167–183.Google Scholar
Sullivan, R.M., 1974, Preliminary analysis of a nearly complete glyptosaur (Reptilia: Anguidae) from the Chadron Formation (lower Oligocene), northwestern Nebraska: Proceedings of the Nebraska Academy of Sciences, 84th annual meeting, April.Google Scholar
Sullivan, R.M., 1979, Revision of the Paleogene genus Glyptosaurus (Reptilia, Anguidae): Bulletin of the American Museum of Natural History, v. 163, p. 172.Google Scholar
Sullivan, R.M., 1981, Fossil lizards from the San Juan Basin, New Mexico, in Lucas, S.G., Rigby, K., Jr., and Kues, B., eds., Advances in San Juan Basin Paleontology, Albuquerque, University of New Mexico Press, p. 7688.Google Scholar
Sullivan, R.M., 1982, Fossil lizards from Swain Quarry “Fort Union Formation,” middle Paleocene (Torrejonian), Carbon County, Wyoming: Journal of Paleontology, v. 56, p. 9961010.Google Scholar
Sullivan, R.M., 1986, The skull of Glyptosaurus sylvestris Marsh, 1871 (Lacertilia: Anguidae): Journal of Vertebrate Paleontology, v. 6, p. 2837.CrossRefGoogle Scholar
Sullivan, R.M., 1989, Proglyptosaurus huerfanensis, new genus, new species: Glyptosaurine lizard (Squamata: Anguidae) from the early Eocene of Colorado: American Museum Novitates, no. 2949, p. 18.Google Scholar
Sullivan, R.M., and Augé, M., 2006, Redescription of the holotype of Placosaurus rugosus Gervais 1848–1852 (Squamata, Anguidae, Glyptosaurinae) from the Eocene of France and a revision of the genus: Journal of Vertebrate Paleontology, v. 26, p. 127132.CrossRefGoogle Scholar
Sullivan, R.M., and Holman, A.J., 1996, Squamata, in Prothero, D.R., and Emry, R.J., eds., The Terrestrial Eocene-Oligocene Transition in North America, New York, Cambridge University Press, p. 354372.CrossRefGoogle Scholar
Sullivan, R.M., and Lucas, S.G., 1988, Fossil Squamata from the San José Formation, early Eocene, San Juan Basin, New Mexico: Journal of Paleontology, v. 62, p. 631639.CrossRefGoogle Scholar
Sullivan, R.M., Augé, M., Wille, E., and Smith, R., 2012, A new glyptosaurine lizard from the earliest Eocene of Dormaal, Belgium: Bulletin de la Société Géologique de France, v. 183, p. 627633.Google Scholar
Szabo, M.W., Osborne, E.W., Copeland, C.W. Jr., and Neathery, T.L., 1988, Geologic map of Alabama: Geological Survey of Alabama Special Map 220, scale 1:250,000.Google Scholar
Vandenberghe, N., Hilgen, F.J., and Speijer, R.P., 2012, The Paleogene Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg G.M., eds., The Geologic Time Scale 2012; Oxford, Elsevier Press, p. 855921.CrossRefGoogle Scholar
Van Niewenhuise, D.S., 1982, The Paleocene-lower Eocene Black Mingo Group of the East Central Coastal Plain of South Carolina: South Carolina Geology, v. 26, p. 4767.Google Scholar
Virginia Division of Mineral Resources 1993, Geologic map of Virginia: Virginia Division of Mineral Resources, scale 1:500,000.Google Scholar
Ward, D. J., 1983, Additions to the fish fauna of the English Palaeogene 4. A new batoid genus from the Bracklesham Group of Selsea, Sussex: Tertiary Research, v. 5, p. 105114.Google Scholar
Ward, L.W., 1986, Stratigraphy and characteristic mollusks of the Pamunkey Group (Lower Tertiary) and the Old Church Formation of the Chesapeake Group—Virginia Coastal Plain: US Geological Survey Professional Paper 1346, 91 p.Google Scholar
Weems, R.E., 1998, Actinopterygian fish remains from the Paleocene of South Carolina, in Sanders, A.E., ed., Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA, Transactions of the American Philosophical Society, v. 88, p. 147164.Google Scholar
Weems, R.E., 1999, Actinopterygian fishes from the Fisher/Sullivan Site, in Weems, R.E., and Grimsley, G.J., eds., Early Eocene Vertebrates and Plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia, Virginia Division of Mineral Resources, Publication 152, p. 5399.Google Scholar
Weems, R.E., 2014, Paleogene chelonians from Maryland and Virginia: PaleoBios, v. 31, p. 132.Google Scholar
Weems, R.E., and Bybell, L.M., 1998, Geology of the Black Mingo Group (Paleocene) in the Kingstree and St. Stephen areas of South Carolina, in Sanders, A.E., ed., Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA, Transactions of the American Philosophical Society, v. 88, p. 927.Google Scholar
Weems, R.E., and Edwards, L.E., 2007, Post-middle Miocene origin of modern landforms in the eastern Piedmont of Virginia: Stratigraphy, v. 4, p. 3548.Google Scholar
Weems, R.E, Schindler, J.S., and Lewis, W.C., 2010, Detailed sections from auger holes in the Emporia 1:100,000-scale Quadrangle, North Carolina and Virginia: US Geological Survey Open-File Report 2010-1121.Google Scholar
Wellstead, C.F., 1982, Taxonomic re-assignment of the Miocene lizard, Pletosaurus minimus, from Nebraska: Copeia, v. 1982, p. 549553.CrossRefGoogle Scholar
Westgate, J.W., 1989, Lower vertebrates from an estuarine facies of the middle Eocene Laredo Formation (Claiborne Group), Webb County, Texas: Journal of Vertebrate Paleontology, v. 9, p. 282294.CrossRefGoogle Scholar
Westgate, J.W., and Gee, C.T., 1990, Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 78, p. 163177.CrossRefGoogle Scholar
Winkler, T.C., 1874, Deuxième Mémoire sur des dents de poissons du terrain Bruxellien: Archives du Musée Teyler, v. 4, p. 1648.Google Scholar
Zonneveld, J.-P., Gunnell, G.F., and Bartels, W.S., 2000, Early Eocene fossil vertebrates from the southwestern Green River Basin, Lincoln and Uinta Counties, Wyoming: Journal of Vertebrate Paleontology, v. 20, p. 369386.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *