Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.705 Render date: 2021-07-26T13:59:11.220Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Calendar scale, environmental variation preserved in the skeletal phenotype of a fossil bryozoan (Rhombopora blakei n. sp.), from the Mississippian of Ireland

Published online by Cambridge University Press:  14 July 2015

Steven J. Hageman
Affiliation:
1Department of Geology, Appalachian State University, Boone, NC 28608, USA,
Patrick N. Wyse Jackson
Affiliation:
2Department of Geology, Trinity College, Dublin, Ireland,
Aaron R. Abernethy
Affiliation:
1Department of Geology, Appalachian State University, Boone, NC 28608, USA,
Margret Steinthorsdottir
Affiliation:
2Department of Geology, Trinity College, Dublin, Ireland, 3School of Biology and Environmental Sciences, University College, Dublin, Ireland
Corresponding

Abstract

A single large colony (20 cm) of Rhombopora blakei n. sp. from the Hook Head Formation of Ireland (Tournaisian Stage, Mississippian) permits an analysis of within-colony variation associated with environmental change at a calendar scale (days to decades). Morphometric data for three external characters—apertures spacing along a branch and diagonal to a branch as well as lateral zooecial spacing—were collected as growth series (16–30 generations) from 13 segments within the colony. ANOVA, post-hoc means testing and graphical analysis of standardized data revealed nearest neighbor effects at the zooecial level and non-random distribution of variances across the colony. Parametric tests for sequential nonrandomness revealed cyclic variation through growth transects at three levels (23.3, 9.4 and 5.3 generations). Comparisons to growth rates of modern bryozoans suggests that the longer-term cycles are annual and that the shortest cycles may be related to lunar tidal cycles. The exceptional size and preservation of this single specimen, which is a new species of rhabdomesine Bryozoa, reinforces the importance of collecting individual morphological measurements from randomly selected and widely spaced parts of a colony for taxonomic, evolutionary and ecological applications.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. 1973. Intra- and intercolony variation in populations of Hippoporina neviani (Bryozoa-Cheilostomata), p. 223245. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies: Development and Function Through Time. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
Astrova, G. G. and Morozova, I. P. 1956. Systematics of Bryozoa of the order Cryptostomata. Doklady Akademii Nauk SSSR, n.s., 110: 661664.Google Scholar
Ausich, W. I. and Sevastopulo, G. D. 1994. Taphonomy of Lower Carboniferous crinoids from the Hook Head Formation, Ireland. Lethaia, 27: 245256.CrossRefGoogle Scholar
Ausich, W. I. and Sevastopulo, G. D. 2001. The Lower Carboniferous (Tournaisian) crinoids from Hook Head, County Wexford, Ireland. Monographs of the Palaeontographical Society, London, 137 p.Google Scholar
Austin, T. and Austin, T. 1843-1849. A monograph on Recent and fossil Crinoidea, with figures and descriptions of some Recent and fossil allied genera. London and Bristol. 32 p.Google Scholar
Bader, B. 2000. Life cycle, growth rate and carbonate production of Cellaria sinuosa, p. 136144. In Herrera Cubilla, A. and Jackson, J. B. C. (eds.), Proceedings of the 11th International Bryozoology Conference, Smithsonian Tropical Research Institute, Balboa, Republic of Panama.Google Scholar
Bader, B. and Schäfer, P. 2004. Skeletal morphogenesis and growth check lines in the Antarctic bryozoan Melicerita obliqua. Journal of Natural History, 38: 29012922.CrossRefGoogle Scholar
Bancroft, A. J. 1986a. The Carboniferous fenestrate bryozoan Hemitrypa hibernica M'Coy. Irish Journal of Earth Sciences, 7: 111124.Google Scholar
Bancroft, A. J. 1986b. The Carboniferous fenestrate bryozoan Ptylopora pluma M'Coy. Irish Journal of Earth Sciences, 7: 3545.Google Scholar
Bancroft, A. J. 1988. Ovicells in Rectifenestella from the Lower Carboniferous of Ireland. Irish Journal of Earth Sciences, 9: 1922.Google Scholar
Bancroft, A. J. and Wyse Jackson, P. N. 1995. Revision of the Carboniferous bryozoan Fistulipora incrustans (Phillips, 1836), with remarks on the type species of Fistulipora M'Coy, 1849. Geological Journal, 30: 129143.CrossRefGoogle Scholar
Barnes, D. K. A. 1995. Seasonal and annual growth in erect species of Antarctic bryozoans. Journal of Experimental Marine Biology and Ecology, 188: 181198.CrossRefGoogle Scholar
Barnes, D. K. A., Webb, K. E., and Linse, K. 2006a. Slow growth of Antarctic bryozoans increases over 20 years and is anomalously high in 2003. Marine Ecology Progress Series, 314: 187195.CrossRefGoogle Scholar
Barnes, D. K. A., Webb, K. E., and Linse, K. 2007. Growth rate and its variability in erect Antarctic bryozoans. Polar Biology, 30: 10691081.CrossRefGoogle Scholar
Barnes, D. K. A., Fuentes, V., Clarke, A., Schloss, I. R., and Wallace, M. I. 2006b. Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Research II, 53: 853865.CrossRefGoogle Scholar
Bartley, J. W. and Anstey, R. L. 1987. Growth of monilae in the Permian trepostome Tabulipora carbonaria: evidence for periodicity and a new model of stenolaemate wall calcification, p. 916. In Ross, J. R. P., (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham, Washington.Google Scholar
Beklemishev, W. N. 1969. Principles of Comparative Anatomy of Invertebrates; vol. 1, Promorphology. English edition (based on 3rd Russian edition), Oliver and Boyd Ltd., Edinburg and University of Chicago Press, Chicago.Google Scholar
Berning, B. 2007. The Mediterranean bryozoan Myriapora truncata (Pallas, 1776): a potential indicator of (palaeo-) environmental conditions. Lethaia, 40: 221232.CrossRefGoogle Scholar
Blake, D. B. 1973. Acanthopore morphology and function in the bryozoan family Rhabdomesidae. Journal of Paleontology, 47: 421435.Google Scholar
Blake, D. B. 1976. Functional morphology and taxonomy of branch dimorphism in the Paleozoic bryozoan genus Rhabdomeson. Lethaia, 9: 169178.CrossRefGoogle Scholar
Blake, D. B. 1983. Systematic descriptions for the Suborder Rhabdomesina, p. 550592. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Part G, Bryozoa–Revised 1. Geological Society of America, Boulder, Coloradoand University of Kansas, Lawrence, Kansas.Google Scholar
Boardman, R. S., Cheetham, A. H., and Cook, P. L. 1970. Intracolony variation and the genus concept in Bryozoa, p. 294320. In Yochelson, E. L., (ed.), Proceedings of the North American Paleontological Convention, September 1969, Part C, Chicago.Google Scholar
Boardman, R. S., Cheetham, A. H., and Cook, P. L. 1983. Introduction to the Bryozoa, p. 348. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Part G, Bryozoa Revised. The Geological Society of America and the University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Boardman, R. S., Cheetham, A. H., Oliver, W. A. Jr., Coates, A. G., and Bayer, F. M. 1973. Introducing coloniality, p. vix. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies: Development and Function Through Time. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
Borg, F. 1926. Studies on Recent cyclostomatous Bryozoa. Zoologiska Bidrag från Uppsala, 10: 181507.Google Scholar
Brande, S. and Bretsky, S. S. 1982. Avoid improper statistical analysis in bryozoans: analysis of variance is suitable for study of hierarchical variation. Journal of Paleontology, 56: 12071212.Google Scholar
Brey, T., Gerdes, D., Gutt, J., Mackensen, A., and Starmans, A. 1999. Growth and age of the Antarctic bryozoan Cellaria incula on the Weddell Sea shelf. Antarctic Science, 11: 408414.CrossRefGoogle Scholar
Brey, T., Gutt, J., Mackensen, A., and Starmans, A. 1998. Growth and productivity of the high Antarctic bryozoan Melicerata obliqua. Marine Biology, 132: 327333.CrossRefGoogle Scholar
Buss, L. W. and Jackson, J. B. C. 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. American Naturalist, 113: 223234.CrossRefGoogle Scholar
Cheetham, A. H., Jackson, J. B. C., and Hayek, L. A. C. 1993. Quantitative genetics of bryozoan phenotypic evolution. I. Rate tests for random change versus selection in differentiation of living species. Evolution, 47: 15261538.CrossRefGoogle ScholarPubMed
Cheetham, A. H., Jackson, J. B. C., and Hayek, L. A. C. 1995. Quantitative genetics of bryozoan phenotypic evolution. III. Phenotypic plasticity and the maintenance of genetic variation. Evolution, 49: 290296.CrossRefGoogle ScholarPubMed
Cleary, D. M. and Wyse Jackson, P. N. 2007. Stenophragmidium Bassler, 1952 (Trepostomida: Bryozoa) from the Mississippian of Ireland and Britain. Irish Journal of Earth Sciences, 25: 125.CrossRefGoogle Scholar
Cocito, S. and Ferdeghini, F. 1998. Marcatura con colorante ed etichettatura: due metodi per misurare la crescita in briozoi calcificati. Proceedings 12th Congresso Associazione ltaliana Oceanografia e Limnologia, Isola di Vulcano, 2: 351358.Google Scholar
Cocito, S., Novosel, M., Pasaric, Z., and Key, M. M. Jr. 2006. Growth of the bryozoan Pentapora fascialis (Cheilostomata, Ascophora) around submarine freshwater springs in the Adriatic Sea. Linzer Biologie Beiträge, 38: 1524.Google Scholar
Dresser, A. M. 1960. The Polyzoa of the Lower Carboniferous of Hook Head County Wexford and of Malahide County Dublin. Unpublished , University of Dublin.Google Scholar
Duncan, M. 2003. Early Carboniferous chondrichthyan Thrinacodus from Ireland, and a reconstruction of jaw apparatus. Acta Palaeontologica Polonica, 48: 113122.Google Scholar
Ehrenberg, C. G. 1831. Symbolae physicae, seu icones et descriptiones mammalium, avium, insectorum et animalium evertebratorum … Pars Zoologica. 4. Animalia evertebrate exclusis insectis. Decus Primula., Berlin.Google Scholar
Elias, M. K. 1964. Stratigraphy and paleoecology of some Carboniferous bryozoans, p. 375381. In Tome 1, Cinquième Congrès International de Stratigraphie et de Géologie du Carbonifère, Compte Rendu. Paris.Google Scholar
Falcon-Lang, H. J. 1999. The Early Carboniferous (Courceyan–Arundian) monsoonal climate of the British Isles: evidence from growth rings in fossil woods. Geological Magazine, 136: 177187.CrossRefGoogle Scholar
Farmer, J. D. and Rowell, A. J. 1973. Variation in the bryozoan Fistulipora decora (Moore and Dudley) from the Beil Limestone of Kansas, p. 377394. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies: Development and Function Through Time. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
Franco, M. 1986. The influence of neighbours on the growth of modular organisms with an example from trees. Philosophical Transactions of the Royal Society, London, B, 313: 209225.CrossRefGoogle Scholar
Hageman, S. J. 1995. Observed phenotypic variation in a Paleozoic bryozoan. Paleobiology, 21: 314328.CrossRefGoogle Scholar
Hageman, S. J. and Sawyer, J. A. 2006. Phenotypic variation in the bryozoan Leioclema punctatum (Hall, 1858) from Mississippian ephemeral host microcommunities. Journal of Paleontology, 80: 10471057.CrossRefGoogle Scholar
Hageman, S. J., Needham, L. L., and Todd, C. D. 2009. Threshold effects of food concentration on the skeletal morphology of the marine bryozoan Electra pilosa (Linnaeus, 1767). Lethaia, 42: 438451.CrossRefGoogle Scholar
Hageman, S. J., Bayer, M. M., and Todd, C. D. 1999. Partitioning phenotypic variation: genotypic, environmental and residual components from bryozoan skeletal morphology. Journal of Natural History, 33: 17131735.CrossRefGoogle Scholar
Hageman, S. J., Bayer, M. M., and Todd, C. D. 2002. Partitioning phenotypic variation: implications for morphometric analyses (Bryozoa), p. 131140. In Wyse Jackson, P. N., Buttler, C. J., and Spencer Jones, M. E. (eds.), Bryozoan Studies 2001. Swets and Zeitlinger, Lisse.Google Scholar
Hayward, P. J. 1995. Antarctic Cheilostomatous Bryozoa. Oxford University Press, Oxford, New York, Tokyo. 355 p.Google Scholar
Hayward, P. J. and Ryland, J. S. 1998. Cheilostomatous Bryozoa. Part 1. Aeteoidea – Cribrilinoidea. In Barnes, R. S. K. and Crothers, J. H. (eds.), Synopses of the British Fauna (new series), No. 10, Shrewsbury, Field Studies Council, 366 p.Google Scholar
Hermansen, P., Larsen, P. S., and Riisgård, H. U. 2001. Colony growth rate of encrusting marine bryozoans (Electra pilosa and Celleporella hyalina). Journal of Experimental Marine Biology and Ecology, 263: 123.CrossRefGoogle Scholar
Hickey, D. R. 1987. Skeletal structure, development, and elemental composition of the Ordovician trepostome bryozoan Peronopora. Palaeontology, 30: 691716.Google Scholar
Holdener, E. J. and Hageman, S. J. 1998. Implications of intracolonial variation in a Paleozoic bryozoan. Journal of Paleontology, 72: 809818.CrossRefGoogle Scholar
Hunter, E. and Hughes, R. N. 1994. The influence of temperature, food ration and genotype on zooid size in Celleporella hyalina (L.), p. 8386. In Hayward, P. J., Ryland, J. S., and Taylor, P. D. (eds.), Biology and Palaeobiology of Bryozoans. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Jackson, J. B. C. and Cheetham, A. H. 1990. Evolutionary significance of morphospecies: a test with cheilostome Bryozoa. Science, 248: 579583.CrossRefGoogle Scholar
Johnston, I. S. and Higgins, A. C. 1981. Conodont faunas from the Lower Carboniferous rocks at Hook Head, County Wexford. Journal of Earth Sciences, Royal Dublin Society, 4: 8396.Google Scholar
Key, M. M. Jr. 1987. Partitioning of morphological variation across stability gradients in Upper Ordovician trepostomes, p. 145152. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham.Google Scholar
Key, M. M. Jr., Wyse Jackson, P. N., Miller, K. E., and Patterson, W. P. 2008. A stable isotope test for the origin of fossil brown bodies in Trepostome bryozoans from the Ordovician of Estonia, p. 7584. In Hageman, S. J., Key, M. M. Jr. and Winston, J. E. (eds.), Bryozoan Studies 2007. Virginia Museum of Natural History Special Publication Number 15.Google Scholar
Lombardi, C., Cocito, S., Occhipinti-Ambrogi, A., and Hiscock, K. 2006. The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Marine Biology, 149: 11031109.CrossRefGoogle Scholar
M'Coy, F. 1844. A synopsis of the characteristics of the Carboniferous Limestone fossils of Ireland. Dublin University Press, Dublin, 207 p.CrossRefGoogle Scholar
Meek, F. B. 1872. Report on the paleontology of eastern Nebraska, p. 81239. In Hayden, F. V. (ed.), Final Report of the United States Geological Survey of Nebraska and portions of the adjacent territories. U.S. Government Printing Office, Washington.Google Scholar
Miller, T. G. 1961. New Irish Tournaisian fenestellids. Geological Magazine, 98: 493500.CrossRefGoogle Scholar
Mottequin, B. 2010. Mississippian (Tournaisian) brachiopods from the Hook Head Formation, County Wexford (south-east Ireland). Special Papers in Palaeontology, 84: 243285.Google Scholar
Nikiforova, A. I. 1948. Lower Carboniferous bryozoans of Karatau. Academiya Nauk Kazakhskoi SSR, Alma-Ata, 53 p.Google Scholar
Newton, G. B. 1971. Rhabdomesid bryozoans of the Wreford Megacyclothem (Wolfcampian, Permian) of Nebraska, Kansas, and Oklahoma. University of Kansas Paleontological Contributions, 56: 171.Google Scholar
Nudds, J. R. 1983. The Carboniferous coral Palaeacis in Ireland. Palaeontology, 26: 211225.Google Scholar
O'Dea, A. 2003. Seasonality and zooid size variation in Panamanian encrusting bryozoans. Journal of the Marine Biological Association of the United Kingdom, 83: 11071108.CrossRefGoogle Scholar
O'Dea, A. and Okamura, B. 1999. Influence of seasonal variation in temperature, salinity, and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati. Marine Biology, 135: 581588.CrossRefGoogle Scholar
O'Dea, A. and Okamura, B. 2000. Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigating palaeoseasonality. Palaeogeography, Palaeoclimatology, Palaeoecology, 162: 319332.CrossRefGoogle Scholar
O'Dea, A. and Jackson, J. B. C. 2002. Bryozoan growth mirrors contrasting seasonal regimes across the Isthmus of Panama. Palaeogeography, Palaeoclimatology, Palaeoecology, 185: 7794.CrossRefGoogle Scholar
Okamura, B. 1988. Seasonal changes in zooid size and feeding activity in epifaunal colonies of Electra pilosa, p. 197204. In Ross, J. R. P. (ed.), Bryozoa: Past and Present. Bellingham: Western Washington University.Google Scholar
Okamura, B. 1992. Microhabitat variation and patterns of colony growth and feeding in a marine bryozoan. Ecology, 73: 15021513.CrossRefGoogle Scholar
Okamura, B. and Bishop, J. D. D. 1988. Zooid size in cheilostome bryozoans as an indicator of relative palaeotemperature. Palaeogeography, Palaeoclimatology and Palaeoecology, 66: 145152.CrossRefGoogle Scholar
Osborn, R. 1940. Bryozoa of Porto Rico with a resume of West Indian Bryozoan fauna. Scientific Survey of Porto Rico and the Virgin Islands, 16: 321486.Google Scholar
Owen, D. E. 1966. New Carboniferous Polyzoa from Derbyshire. Geological Journal, 5: 135148.CrossRefGoogle Scholar
Owens, R. M. 2000. The Carboniferous trilobites from Ireland described by Phillips, Portlock, M'Coy and Woodward. Irish Journal of Earth Sciences, 18: 132.Google Scholar
Pachut, J. F. 1982. Morphologic variation within and among genotypes in two Devonian bryozoan species: an independent indicator of paleostability? Journal of Paleontology, 56: 703716.Google Scholar
Pachut, J. F. and Anstey, R. L. 1979. A developmental explanation of stability-diversity-variation hypotheses: Morphogenetic regulation in Ordovician bryozoan colonies. Paleobiology, 5: 168187.CrossRefGoogle Scholar
Pätzold, J., Ristedt, H., and Wefer, G. 1987. Rate of growth and longevity of a large colony of Pentapora foliate (Bryozoa) recorded in their oxygen isotope profiles. Marine Biology, 96: 535538.CrossRefGoogle Scholar
Phillips, J. 1841. Figures and description of the Palaeozoic fossils of Cornwall, Devon, and West Somerset. Longman, Brown, Green and Longmans, London, 231 p.Google Scholar
Schopf, T. J. M. 1976. Environmental versus genetic causes of morphologic variability in bryozoan colonies from the deep sea. Paleobiology, 2: 156165.CrossRefGoogle Scholar
Schopf, T. J. M. and Dutton, A. R. 1976. Parallel clines in morphologic and genetic differentiation in a coastal zone marine invertebrate. Paleobiology, 2: 255264.CrossRefGoogle Scholar
Simpson, G. B. 1895. A handbook of the genera of North American Paleozoic Bryozoa; with an introduction upon the structure of living species. New York State Geology 14th Annual Report, 403669.Google Scholar
Sleeman, A. G. 1977. Lower Carboniferous transgressive facies in the Porter's Gate Formation at Hook Head, Co. Wexford. Proceedings of the Royal Irish Academy, 77B: 269285.Google Scholar
Sleeman, A. G., Johnston, I. S., Naylor, D., and Sevastopulo, G. D. 1974. The Stratigraphy of the Carboniferous rocks of Hook Head, Co. Wexford. Proceedings of the Royal Irish Academy, 74B: 227243.Google Scholar
Smith, A. M., Stewart, B., Key, M. M. Jr., and Jamet, C. M. 2001. Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 175: 201210.CrossRefGoogle Scholar
Smyth, L. B. 1928. Salpingium palinorsum: a new Carboniferous coral. Scientific Proceedings of the Royal Dublin Society, 19: 3942.Google Scholar
Smyth, L. B. 1930. The Carboniferous rocks of Hook Head, Co. Wexford. Proceedings of the Royal Irish Academy, 39B: 523566.Google Scholar
Stebbing, A. R. D. 1971. Growth of Flustra foliacea (Bryozoa). Marine Biology, 9: 267273.CrossRefGoogle Scholar
Tavener-Smith, R. 1969. Skeletal structure and growth in the Fenestellidae (Bryozoa). Palaeontology, 12: 281309.Google Scholar
Tavener-Smith, R. 1974. Early growth stages in rhabdomesoid bryozoans from the Lower Carboniferous of Hook Head, Ireland. Palaeontology, 17: 149164.Google Scholar
Taylor, P. D. and Furness, R. W. 1978. Astogenetic and environmental variation of zooid size within colonies of Jurassic Stomatopora (Bryozoa, Cyclostomata). Journal of Paleontology, 52: 10931102.Google Scholar
Tietzsch-Tyler, D. and Sleeman, A. G. 1994. A geological description of South Wexford and adjoining parts of Waterford, Kilkenny and Carlow to accompany the Bedrock Geology 1:100,000 scale map series, Sheet 23, South Wexford. Geological Survey of Ireland, Dublin.Google Scholar
Trizna, V. B. 1958. Early Carboniferous bryozoans of the Kuznetsk Basin. Trudy Vsesojuznyj nauchno-Issledovatel'skyj geologo-razvedocnyj Instituta, 122: 1436.Google Scholar
Udhayakumar, M. and Karande, A. A. 1989. Growth and breeding in cheilostome biofouler, Electra bengalensis Stoliczka in Bombay waters, west coast of India. Indian Journal of Marine Science, 18: 9599.Google Scholar
Urbanek, A. 2004. Morphogenetic gradients in graptolites and bryozoans. Acta Palaeontolgica Polonica, 49: 485504.Google Scholar
Vine, G. R. 1884. Fourth report of the committee, consisting of Dr. H.C. Sorby and Mr. G.R. Vine, appointed for the purpose of reporting on fossil Bryozoa. Report of the British Association for the Advancement of Science (Southport, 1883), 161209.Google Scholar
Winston, J. E. 1976. Experimental culture of the estuarine ectoproct Conopeum tenuissimum from Chesapeake Bay. Biological Bulletin, 150: 318335.CrossRefGoogle ScholarPubMed
Winston, J. E. 1977. Feeding in marine bryozoans, p. 233271. In Woollacott, R. M. and Zimmer, R. L. (eds.), The Biology of Bryozoans. Academic Press, New York.CrossRefGoogle Scholar
Winston, J. E. 1983. Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bulletin of Marine Sciences, 33: 688702.Google Scholar
Wyse Jackson, P. N. 1996. Bryozoa from the Lower Carboniferous (Visean) of County Fermanagh, Ireland. Bulletin of the Natural History Museum, London (Geology), 52: 119171.Google Scholar
Wyse Jackson, P. N., McKinney, F. K., and Bancroft, A. J. 2006. Fenestrate bryozoan genera based on species from Ireland originally described by Frederick M'Coy in 1844. Palaeontology, 49: 741767.CrossRefGoogle Scholar
Zar, J. H. 1999. Biostatistical Analysis (4th edition). Prentice-Hall, Upper Saddle River, New Jersey, 929 p.Google Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calendar scale, environmental variation preserved in the skeletal phenotype of a fossil bryozoan (Rhombopora blakei n. sp.), from the Mississippian of Ireland
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Calendar scale, environmental variation preserved in the skeletal phenotype of a fossil bryozoan (Rhombopora blakei n. sp.), from the Mississippian of Ireland
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Calendar scale, environmental variation preserved in the skeletal phenotype of a fossil bryozoan (Rhombopora blakei n. sp.), from the Mississippian of Ireland
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *