Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-06T19:01:39.969Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Calcardea junnei Gingerich, 1987 from the late Paleocene of North America is not a heron, but resembles the early Eocene Indian taxon Vastanavis Mayr et al., 2007

Published online by Cambridge University Press:  21 December 2018

Gerald Mayr
Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
Philip D. Gingerich
Museum of Paleontology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109-1079, USA
Thierry Smith
Royal Belgian Institute of Natural Sciences, Directorate Earth and History of Life, Rue Vautier 29, B-1000 Brussels, Belgium


We revisit the holotype of Calcardea junnei Gingerich, 1987 from the latest Paleocene (Clarkforkian) of the Willwood Formation (Wyoming, USA). The species is based on a partial skeleton and was originally assigned to the Ardeidae (herons). As we show, this classification cannot be upheld and Calcardea Gingerich, 1987 more closely resembles the taxon Vastanavis Mayr et al., 2007 (Vastanavidae), a parrot-like bird from the early Eocene of India. Even though C. junnei is a large bird, its long wings and short tarsometatarsus argue against a predominantly terrestrial way of living, and the morphology of the tarsometatarsus and pedal phalanges instead suggest strong grasping feet. We conclude that an assignment of Calcardea to the landbird clade (Telluraves) is better supported than its classification into the waterbird clade (Aequornithes), which includes Ardeidae and other ‘ciconiiform’ and ‘pelecaniform’ taxa. Calcardea junnei is one of the oldest known representatives of Telluraves and its morphology shows plesiomorphic features, which contributed to its previous misidentification as a heron. Calcardea exhibits a distinctive osteology and affords a glimpse of a previously unknown late Paleocene avian morphotype.

Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alvarenga, H.M.F., 1985, Um novo Psilopteridae (Aves: Gruiformes) dos sedimentos Terciários de Itaboraí, Rio de Janeiro, Brasil, in Campos, D.A., Ferreira, C.S., Brito, I.M., and Viana, C.F., eds., Anais do VIII Congresso Brasileiro de Paleontologia. MME-DNPM, Série Geologia 27, Paleontologia, Estratigrafia, v. 2, p. 1720.Google Scholar
Andors, A., 1992, Reappraisal of the Eocene groundbird Diatryma (Aves: Anserimorphae), in Campbell, K.E., ed., Papers in Avian Paleontology Honoring Pierce Brodkorb: Natural History Museun of Los Angeles County, Science Series, v. 36, p. 109125.Google Scholar
Bloch, J.I., and Boyer, D.M., 2001, Taphonomy of small mammals in freshwater limestones from the Paleocene of the Clarks Fork Basin: University of Michigan Papers in Paleontology, v. 33, p. 185198.Google Scholar
Cracraft, J., 1969, Systematics and evolution of the Gruiformes (Class, Aves), 1, The Eocene family Geranoididae and the early history of the Gruiformes: American Museum Novitates, v. 2388, p. 141.Google Scholar
Field, D.J., Bercovici, A., Berv, J.S., Dunn, R., Fastovsky, D.E., Lyson, T.R., Vajda, V., and Gauthier, J., 2018, Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction: Current Biology, v. 28, p. 18251831, doi:10.1016/j.cub.2018.04.062.Google Scholar
Gingerich, P.D., 1987, Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clark's Fork Basin, Wyoming: Contributions from the Museum of Paleontology, University of Michigan, v. 27, p. 275320.Google Scholar
Gray, G.R., 1844–1849, The Genera of Birds: Comprising their Generic Characters, a Notice of the Habits of Each Genus, and an Extensive List of Species Referred to their Several Genera: London, Longman, Brown, Green, and Longmans, 483 p.Google Scholar
Houde, P., 1988, Paleognathous birds from the early Tertiary of the Northern Hemisphere: Publications of the Nuttall Ornithological Club, v. 22, p. 1148.Google Scholar
Houde, P., and Olson, S.L., 1992, A radiation of coly-like birds from the early Eocene of North America (Aves: Sandcoleiformes new order), in Campbell, K.E., ed., Papers in Avian Paleontology Honoring Pierce Brodkorb: Natural History Museum of Los Angeles County, Science Series, v. 36, p. 137160.Google Scholar
Ksepka, D.T., Stidham, T.A., and Williamson, T.E., 2017, Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction: Proceedings of the National Academy of Sciences, v. 114, p. 80478052, doi:10.1073/pnas.1700188114.Google Scholar
Latham, J., 1790, Index Ornithologicus, Sive, Systema Ornithologiae: Complectens Avium Divisionem in Classes, Ordines, Genera, Species, Ipsarumque Varietates: Adjectis Synonymis, Locis, Descriptionibus, & c.: London, Leigh & Sotheby, 466 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 p.Google Scholar
Manz, C.L., and Bloch, J.I., 2015, Systematics and phylogeny of Paleocene-Eocene Nyctitheriidae (Mammalia, Eulipotyphla?) with description of a new species from the late Paleocene of the Clarks Fork Basin, Wyoming, USA: Journal of Mammalian Evolution, v. 22, p. 307342, doi:10.1007/s10914-014-9284-3.Google Scholar
Mayr, G., 2002, An owl from the Paleocene of Walbeck, Germany: Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe, v. 5, p. 283288, doi:10.1002/mmng.20020050117.Google Scholar
Mayr, G., 2007, The birds from the Paleocene fissure filling of Walbeck (Germany): Journal of Vertebrate Paleontology, v. 27, p. 394408, doi:10.1671/0272-4634(2007)27[394:TBFTPF]2.0.CO;2.Google Scholar
Mayr, G., 2009, Paleogene Fossil Birds, Heidelberg, Springer, 262 p.Google Scholar
Mayr, G., 2011, Metaves, Mirandornithes, Strisores, and other novelties—A critical review of the higher-level phylogeny of neornithine birds: Journal of Zoological Systematics and Evolutionary Research, v. 49, p. 5876, doi:10.1111/j.1439—469.2010.00568.x.Google Scholar
Mayr, G., 2015, A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes): Zoologica Scripta, v. 44, p. 587602, doi:10.1111/zsc.12128.Google Scholar
Mayr, G., 2016, On the taxonomy and osteology of the early Eocene North American Geranoididae (Aves, Gruoidea): Swiss Journal of Palaeontology, v. 135, p. 315325, doi:10.1007/s13358-016-0117-2.Google Scholar
Mayr, G., 2017, Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance: Chichester, UK, Wiley-Blackwell, 293 p.Google Scholar
Mayr, G., and Clarke, J., 2003, The deep divergences of neornithine birds: A phylogenetic analysis of morphological characters: Cladistics, v. 19, p. 527553, doi:10.1016/j.cladistics.2003.10.003.Google Scholar
Mayr, G., Rana, R.S., Sahni, A., and Smith, T., 2007, Oldest fossil avian remains from the Indian subcontinental plate: Current Science, v. 92, p. 12661269.Google Scholar
Mayr, G., Rana, R.S., Rose, K.D., Sahni, A., Kumar, K., Singh, L., and Smith, T., 2010, Quercypsitta-like birds from the early Eocene of India (Aves, ?Psittaciformes): Journal of Vertebrate Paleontology, v. 30, p. 467478, doi:10.1080/02724631003617357.Google Scholar
Mayr, G., Rana, R.S., Rose, K.D., Sahni, A., Kumar, K., and Smith, T., 2013, New specimens of the early Eocene bird Vastanavis and the interrelationships of stem group Psittaciformes: Paleontological Journal, v. 47, p. 13081314, doi:10.1134/S0031030113110105.Google Scholar
Mayr, G., De Pietri, V.L., Scofield, R.P., and Smith, T., 2018a, A fossil heron from the early Oligocene of Belgium—The earliest temporally well-constrained record of the Ardeidae: Ibis, doi: 10.1111/ibi.12600.Google Scholar
Mayr, G., Hervet, S., and Buffetaut, E., 2018b, On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): New taxonomic records and unusual soft tissue preservation: Geological Magazine, doi:10.1017/S0016756818000080.Google Scholar
Mourer-Chauviré, C., 1994, A large owl from the Palaeocene of France: Palaeontology, v. 37, p. 339348.Google Scholar
Rich, P.V., and Bohaska, D.J., 1981, The Ogygoptyngidae, a new family of owls from the Paleocene of North America: Alcheringa, v. 5, p. 95102.Google Scholar
Secord, R., Gingerich, P.D., Smith, M.E., Clyde, W.C., Wilf, P., and Singer, B.S., 2006, Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming: American Journal of Science, v. 306, p. 211245, doi:10.2475/ajs.306.4.211.Google Scholar
Smith, T., Kumar, K., Rana, R.S., Folie, A., Solé, F., Noiret, C., Steeman, T., Sahni, A., and Rose, K.D., 2016, New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities: Geoscience Frontiers, v. 7, p. 9691001, doi:10.1016/j.gsf.2016.05.001.Google Scholar
Spix, J.B.v., 1824, Avium Species Novae, Quas in Itinere per Brasiliam Annis MDCCCXVII–MDCCCXX Iussu et Auspiciis Maximiliani Josephi I, Bavariae Regis Suscepto Collegit et Descripsit, Volume 1: Munich, Hübschmann, 90 p.Google Scholar
Wetmore, A., 1934, Fossil birds from Mongolia and China: American Museum Novitates, v. 711, p. 116.Google Scholar
Wetmore, A., 1938, Another fossil owl from the Eocene of Wyoming: Proceedings of the United States National Museum, v. 85, p. 2729.Google Scholar
Yuri, T., Kimball, R.T., Harshman, J., Bowie, R.C.K., Braun, M.J., Chojnowski, J.L., Han, K.-L., Hackett, S.J., Huddleston, C.-J., Moore, W.-S., Reddy, S., Sheldon, F.H., Steadman, D.W., Witt, C.C., and Braun, E.L., 2013, Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals: Biology, v. 2, p. 419444, doi:10.3390/biology2010419.Google Scholar