Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-k2tdd Total loading time: 0.182 Render date: 2021-07-23T23:35:19.364Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Berriochloa gabeli and Berriochloa huletti (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebraska and Kansas

Published online by Cambridge University Press:  20 May 2016

Joseph R. Thomasson
Affiliation:
Sternberg Museum of Natural History, Department of Biological Sciences Fort Hays State University, Hays, Kansas 67601,
Corresponding
E-mail address:

Abstract

Berriochloa gabeli n. sp. and Berriochloa huletti n. sp. are described from fossil anthoecia (husks) recovered in late Miocene (Ash Hollow Formation) sediments in central Nebraska and central and western Kansas. Comparisons with other known fossil and living grasses suggest relationships with members of the grass tribe Stipeae and previously described B. intermedia Elias, 1942 from Ash Hollow deposits in north-central Kansas. Berriochloa gabeli and B. huletti were recovered in direct association with, or in the close vicinity, of rich biotas that provide evidence of widespread, probably treeless, grasslands with adjacent moist riparian habitats along streams or around temporary pools of water during deposition. Fossil vertebrates associated with the grasses at some sites suggest that the age of B. gabeli and B. huletti is early to middle Hemphillian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Backlund, D., Gabel, M. L., and Tieszen, L. L. 1991. An environmental gradient in the Tertiary Great Plains as indicated by stable carbon isotopes from organic carbon in plant fossils. Proceedings of the South Dakota Academy of Science, 70:99108.Google Scholar
Barkworth, M. E. 1990. Nassella (Gramineae, Stipeae): revised interpretation and nomenclatorial changes. Taxon, 39:597614.CrossRefGoogle Scholar
Barkworth, M. E. 1993. North American Stipeae (Gramineae): taxonomic changes and other comments. Phytologia, 74:125.CrossRefGoogle Scholar
Barkworth, M. E., and Everett, J. 1987. Evolution in the Stipeae: identification and relationships of its monophyletic taxa, p. 251264. In Soderstrom, T. R., Hilu, K. W., Campbell, C. S., and Barkworth, M. E. (eds.), Grass Systematics and Evolution. Smithsonian Institution Press, Washington, D.C. Google Scholar
Beauvois, P. de. 1812. Essai Agrostographie. Paris, 495 p.Google Scholar
Berry, E. W. 1928a. Fossil nutlets of the genus Lithospermum. United States National Museum Proceedings, 73:13.Google Scholar
Berry, E. W. 1928b. Stones of Celtis in the Tertiary of the western United States. American Museum Novitates, 298:15.Google Scholar
Bown, T. M. 1980. The fossil Insectivora of Lemoyne Quarry (Ash Hollow Formation, Hemphillian), Keith County, Nebraska. Transactions of the Nebraska Academy of Sciences, 8:99112.Google Scholar
Brattstrom, B. H. 1961. Some new fossil tortoises from western North America with remarks on the zoogeographic and paleoecology of tortoises. Journal of Paleontology, 35:543560.Google Scholar
Burnett, G. T. 1835. Outlines of Botany. Renshaw, London, 1068 p.Google Scholar
Cialdella, A. M., and Arriaga, M. 1998. Revisión de las especias Sudamericanas del género Piptochaetium (Poaceae, Pooideae, Stipeae). Darwiniana, 36:107157.Google Scholar
Cialdella, A. M., and Giussani, L. M. 2002. Phylogenetic relationships of the genus Piptochaetium (Poaceae, Pooideae, Stipeae): evidence from morphological data. Annals of the Missouri Botanical Garden, 89:305336.CrossRefGoogle Scholar
Cockerell, T. D. A. 1933. The name of a fossil boraginaceous plant. Torreya, 33:15.Google Scholar
Cowan, M. R., Gabel, M. L., Jahren, A. H., and Tieszen, L. L. 1997. Growth and biomineralization of Celtis occidentalis (Ulmaceae) pericarps. American Midland Naturalist, 137:266273.CrossRefGoogle Scholar
Cronquist, A., Takhtajan, A., and Zimmerman, W. 1966. On the higher taxa of the Embryobionta. Taxon, 15:129134.CrossRefGoogle Scholar
Darnell, M. E. 2000. Systematics of the fossil Equidae (Mammalia: Perissodactyla) Minium Quarry, Graham County, Kansas. Unpublished , , 119 p.Google Scholar
de Jussieu, A. L. 1789. Genera Plantarum. Viduam Herissant, Paris, 498 p.Google Scholar
Desvaux, E. 1853. Gramineas, Flora Chilensis, p. 233469. In Gay, C. (ed.), Historica Física y Política de Chile Botánica, v. 6. Paris, 551 p.Google Scholar
Elias, M. E. 1932. Grasses and other plants from the Tertiary rocks of Kansas and Colorado. University of Kansas Science Bulletin, 20:333367.Google Scholar
Elias, M. K. 1935. Tertiary grasses and other prairie vegetation from the High Plains of North America. American Journal of Science, 29:2433.CrossRefGoogle Scholar
Elias, M. K. 1942. Tertiary prairie grasses and other herbs from the High Plains. Geological Society of America Special Papers, 41:1176.Google Scholar
Ellis, R. P. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia, 12:641671.CrossRefGoogle Scholar
Gabel, M. L. 1987. A fossil Lithospermum (Boraginaceae) from the Tertiary of South Dakota. American Journal of Botany, 74:16901693.CrossRefGoogle Scholar
Gabel, M. L., and Bich, H. 1988. A range extension for the fossil Eleofimbris (Cyperaceae). Southwestern Naturalist, 33:110112.CrossRefGoogle Scholar
Gabel, M. L., Backlund, D. C., and Haffner, J. 1992. Sedge (Cyperaceae) achenes from the late Barstovian of Nebraska. Journal of Paleontology, 66:525529.CrossRefGoogle Scholar
Gabel, M. L., Backlund, D. C., and Haffner, J. 1998. The Miocene macroflora of the northern Ogallala Group, northern Nebraska and southern South Dakota. Journal of Paleontology, 72:388397.CrossRefGoogle Scholar
Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden, 88:373457.CrossRefGoogle Scholar
Green, J. 1825. Description of a new species of salamander. Journal of the Academy of Natural Sciences, 5(1):116118.Google Scholar
Haffner, J., Gabel, M. L., and Tieszen, L. L. 1990. Stable carbon isotope ratios of Miocene sediments and fossil Celtis (Ulmaceae) and Berriochloa (Gramineae) reproductive structures from the northern Great Plains. Proceedings of the South Dakota Academy of Science, 69:145152.Google Scholar
Holman, J. A. 1971. Climatic significance of giant land tortoises from the Wood Mountain Formation (Upper Miocene) of Saskatchewan. Canadian Journal of Earth Sciences, 8:11481151.CrossRefGoogle Scholar
Hsiao, C., Jacobs, S. W. L., Chatterton, N. J., and Asay, K. H. 1999. A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). Australian Systematic Botany, 11:667688.CrossRefGoogle Scholar
Jacobs, B. F., Kingston, J. D., and Jacobs, L. L. 1999. The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86:590643.CrossRefGoogle Scholar
Jacobs, S. W. L., Everett, J., and Barkworth, M. E. 1995. Clarification of morphological terms used in Stipeae (Gramineae), and a reassessment of Nassella in Australia. Taxon, 44:3341.CrossRefGoogle Scholar
Jacobs, S. W. L., Everett, J., Barkworth, M. E., and Hsiao, C. 2000. Relationships within the Stipoid grasses (Gramineae), p. 7582. In Jacobs, S. W. L. and Everett, J. (eds.), Grasses: Systematics and Evolution. CSIRO, Melbourne.Google Scholar
Jahren, A. H., Gabel, M. L., and Amundson, R. 1998. Biomineralization in seeds: developmental trends in isotopic signatures of hackberry. Paleogeography, Paleoclimatology, Paleoecology, 138:259269.CrossRefGoogle Scholar
Johnson, C. S. 1937. Calippus regulus from the Clarendon beds of Donley County, Texas. American Midland Naturalist, 18:905907.CrossRefGoogle Scholar
LaGarry, H. E. 1988. Taphonomic evidence of predation and scavenging of Teloceras (Mammalia: Rhinocerotidae), with a description of the Camelidae from the Minium Quarry local biota of north-central Kansas. Unpublished , , 59 p.Google Scholar
Leite, M. B. 1990. Stratigraphy and mammalian paleontology of the Ash Hollow Formation (upper Miocene) on the north side of Lake McConaughy, Keith County, Nebraska. University of Wyoming Contributions to Geology, 28:129.Google Scholar
Martin, L. 1975. Microtine rodents from the Pliocene Ogallala of Nebraska and the early evolution of the Microtinae in North America, p. 101110. In Studies on Cenozoic Paleontology and Stratigraphy, Claude W. Hibbard Memorial Volume 3. Museum of Paleontology, University of Michigan, Ann Arbor.Google Scholar
Mergen, D. E. 1991. Taxonomy and taphonomy of a fossil dicotyledon [Ulmus (Ulmaceae)] from the Ogallala Group (Miocene) Graham County, Kansas. Unpublished , , 45 p.Google Scholar
Parmley, D., and Holman, J. A. 1995. Hemphillian (Late Miocene) snakes from Nebraska, with comments on Arikareean through Blancan snakes of Midcontinental North America. Journal of Vertebrate Paleontology, 15:7995.CrossRefGoogle Scholar
Presl, C. B. 1830. Reliquiae Haenkeanae. J. G. Galve, Prague, 355 p.Google Scholar
Segal, R. 1964. Nomenclatorial changes in fossil species of Cryptantha. Transaction Kansas Academy, 67(1):203.CrossRefGoogle Scholar
Thomasson, J. R. 1976. Tertiary grasses and other angiosperms from Kansas, Nebraska, and Colorado. Unpublished Ph.D. dissertation, Iowa State University, Ames, 412 p.Google Scholar
Thomasson, J. R. 1978. Epidermal patterns of the lemma in some fossil and living grasses and their phylogenetic significance. Science, 199:975977.CrossRefGoogle ScholarPubMed
Thomasson, J. R. 1979a. Late Cenozoic grasses and other angiosperms from Kansas, Nebraska, and Colorado: biostratigraphy and relationships to living taxa. Kansas Geological Survey Bulletin, 218:168.Google Scholar
Thomasson, J. R. 1979b. Angiosperms from the late Tertiary Keller local fauna of Ellis County, Kansas. University of Wyoming Contributions to Geology, 17:5963.Google Scholar
Thomasson, J. R. 1980a. A fossil Equisetum sp. (Family Equisetaceae, subgenus Hippochaetae) from the late Tertiary Ash Hollow formation of Nebraska. American Journal of Botany, 67:125127.CrossRefGoogle Scholar
Thomasson, J. R. 1980b. Archaeoleersia nebraskensis gen. et sp. nov. (Gramineae–Oryzeae), a new fossil grass from the late Tertiary of Nebraska. American Journal of Botany, 67:876882.CrossRefGoogle Scholar
Thomasson, J. R. 1980c. Paleoeriocoma (Gramineae: Stipeae) from the Miocene of Nebraska: taxonomic and phylogenetic significance. Systematic Botany, 5:233240.CrossRefGoogle Scholar
Thomasson, J. R. 1983. Carex graceii sp. n., Cyperocarpus eliasii sp. n., Cyperocarpus terrestris sp. n., and Cyperocarpus pulcherrima sp. n. (Cyperaceae) from the Miocene of Nebraska. American Journal of Botany, 70:435449.CrossRefGoogle Scholar
Thomasson, J. R. 1984. Miocene grass (Gramineae: Arundinoideae) leaves showing external micromorphological and internal anatomical features. Botanical Gazette, 145:204209.CrossRefGoogle Scholar
Thomasson, J. R. 1985. Tertiary fossil plants from Nebraska. National Geographic Society Research Reports 1978 Projects, 19:553564.Google Scholar
Thomasson, J. R. 1990. Fossil plants from the late Miocene Ogallala Formation of central North America: possible paleoenvironmental and biostratigraphic significance, p. 99114. In Gustavson, T. C. (ed.), Geologic Framework and Regional Hydrology: Upper Cenozoic Blackwater Draw Ogallala Formations, Great Plains. Bureau of Economic Geology, The University of Texas, Austin.Google Scholar
Thomasson, J. R. 2003. Eleofimbris svensonii (Cyperaceae) from the Late Tertiary Ogallala Formation of western Kansas. Southwestern Naturalist, 48:442444.2.0.CO;2>CrossRefGoogle Scholar
Thomasson, J. R., Zakrzewski, R. J., LaGarry, H. E., and Mergen, D. E. 1990. A late Miocene (late early Hemphillian) biota from northwestern Kansas. National Geographic Research, 6:231244.Google Scholar
Voorhies, M. R. 1985. A Miocene rhinoceros herd buried in volcanic ash. National Geographic Society Research Reports, 19:671688.Google Scholar
Voorhies, M. R., and Thomasson, J. R. 1979. Fossil grass anthoecia within Miocene rhinoceros skeletons: direct evidence of diet in an extinct species. Science, 206:331333.CrossRefGoogle Scholar
Webb, S. D. 1983. The rise and fall of the late Miocene ungulate fauna in North America, p. 267302. In Nitecki, M. H. (ed.), Coevolution. University of Chicago Press, Chicago.Google Scholar
Zakrzewski, R. J. 1988. Preliminary report on fossil mammals from the Ogallala (Miocene) of north-central Kansas, p. 117127. In Nelson, M. E. (ed.), Geology, paleontology, and Biostratigraphy of Western Kansas. Fort Hays Studies, third series, Science No. 10.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Berriochloa gabeli and Berriochloa huletti (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebraska and Kansas
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Berriochloa gabeli and Berriochloa huletti (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebraska and Kansas
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Berriochloa gabeli and Berriochloa huletti (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebraska and Kansas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *