Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T07:40:37.849Z Has data issue: false hasContentIssue false

Ship Routing Utilizing Strong Ocean Currents

Published online by Cambridge University Press:  17 July 2013

Yu-Chia Chang
Affiliation:
(Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804)
Ruo-Shan Tseng*
Affiliation:
(Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804)
Guan-Yu Chen
Affiliation:
(Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804)
Peter C Chu
Affiliation:
(Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA)
Yung-Ting Shen
Affiliation:
(Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804)

Abstract

From the Surface Velocity Program (SVP) drifter current data, a detailed and complete track of strong ocean currents in the north-western Pacific is provided using the bin average method. The focus of this study is on the Kuroshio, the strong western boundary current of the North Pacific flowing northward along the east coast of Taiwan and then turning eastward off southern Japan. With its average flow speed of about 2 knots, the Kuroshio can significantly increase the ship's speed for a “super-slow-steaming” container ship travelling at speeds of 12 knots between the ports of Southeast Asia and Japan. By properly utilizing knowledge of strong ocean currents to follow the Kuroshio on the northbound runs and avoid it on the return trip, considerable fuel can be saved and the transit time can be reduced. In the future, the detailed Kuroshio saving-energy route could be built into electronic chart systems for all navigators and shipping routers.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambe, D., Imawaki, S., Uchida, H. and Ichikawa, K. (2004). Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys, J. Oceanogr., 60, 375382.CrossRefGoogle Scholar
Barneet, T. P., Adam, J. C. and Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303309.CrossRefGoogle Scholar
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M. and Boss, E. S. (2006). Climate-driven trends in contemporary ocean productivity, Nature, 444, 752755.CrossRefGoogle ScholarPubMed
Centurioni, L. R. and Niiler, P. P., (2003). On the surface currents of the Caribbean Sea, Geophys. Res. Lett., 30, 1279, doi:10.1029/2002GL016231.CrossRefGoogle Scholar
Centurioni, L. R., Niiler, P. P. and Lee, D. K. (2004). Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait, J. Phys. Oceanogr., 34, 113121.2.0.CO;2>CrossRefGoogle Scholar
Chu, P. C. (2008). Probability distribution function of the upper equatorial Pacific current speeds. Geophys. Res. Lett., 35, doi:10.1029/2008GL033669CrossRefGoogle Scholar
Chu, P. C. (2009). Statistical characteristics of the global surface current speeds obtained from satellite altimeter and scatterometer data. IEEE Journal of Selected Topics in Earth Observations and Remote Sensing, 2 (1), 2732.CrossRefGoogle Scholar
Coumou, D. and Rahmstorf, S. (2012). A decade of weather extremes, Nat. Clim. Change, 2, 491496.CrossRefGoogle Scholar
Freeland, H. J. (1975). Statistical observations of the trajectory of neutrally buoyant floats in the North Atlantic, J. Mar. Res., 33, 383404.Google Scholar
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., Agrosa, C. D., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R. and Watson, R. (2008). A Global Map of Human Impact on Marine Ecosystems, Science, 319 (5865), 948952.CrossRefGoogle ScholarPubMed
Hsueh, Y., Schultz, J. R. and Holland, W. R. (1997). The Kuroshio flow-through in the East China Sea: a numerical model, Prog. Oceanog., 39, 79108.CrossRefGoogle Scholar
International Maritime Organization (2009a). Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI), IMO-MEPC.1/Circ.684, 17 August 2009.Google Scholar
International Maritime Organization (2009b). Second IMO GHG Study 2009, IMO-MEPC 59/INF.10/Corr.1, April 2009.Google Scholar
International Maritime Organization (2010). Reduction of GHG emissions from ships, IMO-MEPC 61/INF.22, 2 August 2010.Google Scholar
International Maritime Organization (2011). Assessment of IMO Mandated energy efficiency measures for international shipping, IMO-MEPC 63/INF.2, 31 October 2011.Google Scholar
Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T. and Cheng, X. (2000). Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean, Earth Planet. Sc. Lett., 184, 305319.CrossRefGoogle Scholar
Lo, H. K. and McCord, M. R. (1995). Adaptive ship routing through stochastic ocean currents: General formulations and empirical results, Transportation Res., A., 32, 547561.Google Scholar
Matthews, H. D. and Zickfeld, K. (2012). Climate response to zeroed emissions of greenhouse gases and aerosols, Nat. Clim. Change, 2, 338341.CrossRefGoogle Scholar
Nitani, H. (1972): Beginning of the Kuroshio. p. 129163. In Kuroshio, University of Washington Press, Seattle,WA.Google Scholar
NOAA/AOML Website (2013). [Available online at http://www.aoml.noaa.gov/phod/dac/dacdata.html.]Google Scholar
Rosa, E. A. and Dietz, T. (2012). Human drivers of national greenhouse-gas emissions, Nat. Clim. Change, 2, 581586.CrossRefGoogle Scholar
Rudnick, D. L., Jan, S., Centurioni, L., Lee, C. M., Lien, R.-C., Wang, J., Lee, D.-K., Tseng, R.-S., Kim, Y. Y. and Chern, C.-S. (2011). Seasonal and Mesoscale variability of the Kuroshio near its origin, Oceanography, 24, pp. 5263.CrossRefGoogle Scholar
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Bliesner, B. O., Schmittner, A. and Bard, E. (2012). Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 4954.CrossRefGoogle ScholarPubMed
ShipmentLink Shipping & Transport Website (2013). [Available online at http://www.shipmentlink.com/tvs2/jsp/TVS2_LongTermMenu.jsp?type=S]Google Scholar
Spence, A., Poortinga, W., Butler, C. and Pidgeon, N. F., Perception of climate change and willingness to save energy related to flood experience, Nat. Clim. Change, 1, 4649.CrossRefGoogle Scholar
Yamashiro, T. and Kawabe, M. (1996). Monitoring of position of the Kuroshio axis in the Tokara Strait using sea level data, J. Oceanogr., 52, pp. 675687.CrossRefGoogle Scholar
Yuan, D., Han, W. and Hu, D. (2006). Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data, J. Geophys. Res., 111, C11007, doi:10.1029/2005JC003412.Google Scholar