Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-5kt27 Total loading time: 0.291 Render date: 2021-09-26T14:24:49.546Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Verification of AIS Data by using Video Images taken by a UAV

Published online by Cambridge University Press:  08 May 2019

Fan Zhou*
Affiliation:
(College of Information Engineering, Shanghai Maritime University)
Shengda Pan
Affiliation:
(College of Information Engineering, Shanghai Maritime University)
Jingjing Jiang
Affiliation:
(College of Information Engineering, Shanghai Maritime University)
*

Abstract

Effective technical methods for verifying the authenticity and accuracy of Automatic Identification System (AIS) data, which are important for safe navigation and traffic regulation, are still lacking. In this study, we propose a new method to verify AIS data by using video images taken by an Unmanned Aerial Vehicle (UAV). An improved ViBe algorithm is used to extract the ship target image from the video images and the ship's spatial position is calculated using a monocular target-positioning algorithm. The positioning results are compared with the position, speed and course data of the same ship in AIS, and the authenticity and accuracy of the AIS data are verified. The results of the experiment conducted in the inland waterways of Huangpu River in Shanghai, China, show that AIS signals can be automatically checked and verified by a UAV in real time and can thus improve the supervision efficiency of maritime departments.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altan, Y.C. and Otay, E.N. (2018). Spatial mapping of encounter probability in congested waterways using AIS. Ocean Engineering, 164, 263271. doi:10.1016/j.oceaneng.2018.06.049CrossRefGoogle Scholar
Barnich, O. and Van Droogenbroeck, M. (2011). ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Transactions on Image Processing, 20(6), 17091724. doi:10.1109/tip.2010.2101613CrossRefGoogle ScholarPubMed
Chen, H., Kirubarajan, T. and Bar-Shalom, Y. (2003). Performance Limits of Track-to-Track Fusion Versus Centralized Estimation: Theory and Application. IEEE Transactions on Aerospace and Electronic Systems, 39(2), 386400. doi:10.1109/taes.2003.1207252CrossRefGoogle Scholar
Daronkolaei, A.G., Nazari, V., Menhaj, M.B. and Shiry, S. (2008). A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems. Tools in Artificial Intelligence. InTech, 163186. doi:10.5772/74Google Scholar
Goerlandt, F. and Kujala, P. (2011). Traffic Simulation based Ship Collision Probability Modeling. Reliability Engineering & System Safety, 96(1), 91107. doi:10.1016/j.ress.2010.09.003CrossRefGoogle Scholar
Gunnar Aarsæther, K. and Moan, T. (2009). Estimating Navigation Patterns from AIS. The Journal of Navigation, 62(4), 587607. doi:10.1017/s0373463309990129CrossRefGoogle Scholar
Habtemariam, B., Tharmarasa, R., McDonald, M. and Kirubarajan, T. (2015). Measurement level AIS/radar fusion. Signal Processing, 106, 348357. doi:10.1016/j.sigpro.2014.07.029CrossRefGoogle Scholar
Han, Z., Jiao, J., Zhang, B., Ye, Q. and Liu, J. (2011). Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR). Pattern Recognition, 44(9), 21702183. doi:10.1016/j.patcog.2011.03.002CrossRefGoogle Scholar
Harati-Mokhtari, A., Wall, A., Brooks, P. and Wang, J. (2007). Automatic Identification System (AIS): Data Reliability and Human Error Implications. The Journal of Navigation, 60(3), 373389. doi:10.1017/S0373463307004298CrossRefGoogle Scholar
Hartley, R. and Zisserman, A., (2003). Multiple View Geometry in Computer Vision, Second Edition. Cambridge University Press, Cambridge.Google Scholar
Kalal, Z., Mikolajczyk, K. and Matas, J. (2012). Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 14091422. doi:10.1109/TPAMI.2011.239CrossRefGoogle ScholarPubMed
Kanatani, K., Sugaya, Y. and Kanazawa, Y. (2016). Guide to 3D Vision Computation: Geometric Analysis and Implementation. Springer International Publishing. doi:10.1007/978-3-319-48493-8CrossRefGoogle Scholar
Maimun, A., Nursyirman, I.F., Sian, A.Y., Samad, R. and Oladokun, S. (2014). Using AIS Data for Navigational Risk Assessment in Restricted Waters. In: Marine Technology and Sustainable Development, Publisher: IGI Global, 245254. doi:10.4018/978-1-4666-4317-8.ch015CrossRefGoogle Scholar
Mou, J.M., Cees, V.D.T. and Ligteringen, H. (2010). Study on Collision Avoidance in Busy Waterways by using AIS data. Ocean Engineering, 37(5), 483490. doi:10.1016/j.oceaneng.2010.01.012CrossRefGoogle Scholar
Safety Department, Maritime Safety Administration, Ministry of Transport of the People's Republic of China. (2018). Analysis on water transport safety situation of year 2017. China Maritime Safety, (1), 1416. doi:10.16831/j.cnki.issn1673-2278.2018.01.004Google Scholar
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A. and Shah, M. (2014). Visual tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 14421468. doi:10.1109/TPAMI.2013.230Google ScholarPubMed
Somani, D. and Raman, S. (2015). Decision tree for corner detection. IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). doi:10.1109/spices.2015.7091493CrossRefGoogle Scholar
Von Gioi, R.G., Jakubowicz, J., Morel, J.M. and Randall, G. (2010). LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 722732. doi:10.1109/tpami.2008.300CrossRefGoogle Scholar
Wu, L., Xu, Y., Wang, Q., Wang, F. and Xu, Z. (2016). Mapping Global Shipping Density from AIS Data. The Journal of Navigation, 70(1), 6781. doi:10.1017/s0373463316000345CrossRefGoogle Scholar
Yin, H.P., Chen, B., Chai, Y. and Liu, Z.D. (2016). Vision-based Object Detection and Tracking: A Review. Acta Automatica Sinica, 42(10), 14661489. doi:10.16383/j.aas.2016.c150823Google Scholar
Zhang, K. and Song, H. (2013). Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 46(1), 397411. doi:10.1016/j.patcog.2012.07.013CrossRefGoogle Scholar
Zhang, W., Goerlandt, F., Kujala, P. and Wang, Y. (2016). An advanced Method for Detecting possible near Miss Ship Collisions from AIS Data. Ocean Engineering, 124, 141156. doi:10.1016/j.oceaneng.2016.07.059CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Verification of AIS Data by using Video Images taken by a UAV
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Verification of AIS Data by using Video Images taken by a UAV
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Verification of AIS Data by using Video Images taken by a UAV
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *